Problem 1. Find the area enclosed by the line \(y = x + 1 \) and the parabola \(y^2 = 3x + 7 \).

Problem 2. Let \(S \) be the solid obtained by rotating about the \(y \)-axis the region bounded by \(y = 3 + 2x - x^2 \) and \(x + y = 3 \).

(1) Compute the volume of \(S \) by evaluating an integral with respect to the variable \(y \).

(2) Use the method of cylindrical shells to compute the volume of \(S \).

Problem 3.

(1) A 200-lb cable is 100 ft long and hangs vertically from the top of a tall building. How much work is required to lift the cable to the top of the building?

(2) A spring has natural length of 20 cm. Compare the work \(W_1 \) done in stretching the spring from 20 cm to 30 cm with the work \(W_2 \) done in stretching it from 30 cm to 40 cm. How are \(W_1 \) and \(W_2 \) related?

Problem 4. Evaluate the following integrals:

\[
\begin{align*}
\text{(a)} & \quad \int x^2 \ln x \, dx \\
\text{(b)} & \quad \int e^{-x} \cos(2x) \, dx \\
\text{(c)} & \quad \int \tan^3 x \, dx \\
\text{(d)} & \quad \int \frac{x^3}{\sqrt{x^2 + 9}} \, dx.
\end{align*}
\]