Probabilistic Models for Concurrency

and

A Potential Application

MICHAEL W. MISLOVE*

Tulane University

LIAFA

July, 2001

* Work partially supported by the NSF and the ONR.
Outline of talk:

Goal: Describe progress in devising a model for concurrency that supports both nondeterminism and probabilistic choice, and also outline one of its potential applications.

- Review untimed CSP
- Give a specification of a simple buffer in CSP
- Consider extension to PCSP - probabilistic CSP – to include lossy channel
- Show why this model is not satisfactory
- Describe better model
- Recall basics of Hybrid Systems
- Outline method for translating hybrid systems into PCSP
- Describe quantified temporal logic for analyzing processes in PCSP
\textit{CSP} : process algebra for specifying and verifying concurrent processes.

\[
P ::= \text{STOP} \mid \text{SKIP} \mid a \rightarrow P \mid P \setminus B \mid P;Q \mid P || Q \mid P \cap Q \mid P \bowtie Q \mid X \mid \text{rec } X.P
\]

- \text{STOP}\quad \text{Deadlock}
- \text{SKIP}\quad \text{normal termination}
- a \rightarrow P\quad \text{first execute } a \in A, \text{ then act like } P
- P \setminus B\quad P \text{ with all actions in } B \subseteq A \text{ hidden}
- P;Q\quad \text{sequential composition}
- P || Q\quad P \text{ and } Q \text{ synchronizing on actions in } C
- P \cap Q\quad \text{internal choice}
- P \bowtie Q\quad \text{external choice}
- X\quad \text{process variable}
- \text{rec } X.P\quad \text{recursion}
– Both a process and its specification can be written in CSP.

– Processes understood in terms of the events they participate in.

Failures-divergences model for CSP:

\[
\mathbb{FD} = \{(F, D) \mid F = \{(s, X) \mid s \text{ trace of } P \& P \text{ refuses } X \text{ after } s\} \\
\cup \{(s \hat{\tau}, X) \mid P \text{ diverges on } s\} \\
D = \{s \hat{\tau} \mid P \text{ diverges on } s\}\}
\]

\[[a \rightarrow STOP] \equiv \]

\[
\{(\langle \rangle, X) \mid a \not\in X\} \cup \{(a, X) \mid X \subseteq A\}, \emptyset \).
\]

\[[a \rightarrow \text{rec } X.a \rightarrow X) \setminus a] = \]

\[
\{(\langle \rangle, X) \mid a \not\in X\} \cup \{(as, X) \mid s \in A^*, X \subseteq A\}, aA^*)\]
– Process P refines process Q iff every behavior of P is also a behavior of Q.

– Process P satisfies specification S iff every behavior of P is allowed by S.

\[S = (F_1, D_1) \subseteq (F_2, D_2) = P \iff F_2 \subseteq F_1 \ \& \ D_2 \subseteq D_1 \]

– Reduces verification to set containment.

– Automated support is available to check this.
A Simple Buffer

A buffer for data of type T should:

(i) Only input on channel in and output on channel out. It correctly copies its input to its output without loss of data or reordering.

(ii) Always accept input when empty.

(iii) Always be willing to output when non-empty.
Translation into CSP: B is a buffer if:

(i) $s \in \text{traces}(B) \Rightarrow s \in (in.T \cup out.T)^* \wedge s \downarrow out \leq s \downarrow in.$

(ii) $(s, X) \in \text{failures}(B) \wedge s \downarrow in = s \downarrow out \Rightarrow X \cap in.T = \emptyset.$

(iii) $(s, X) \in \text{failures}(B) \wedge s \downarrow out < s \downarrow in \Rightarrow out.T \not\subseteq X.$

For example,

$$COPY := in?x \rightarrow out!x \rightarrow COPY$$

satisfies this specification.
An N-place buffer can be specified as $BUFF^N_{\langle \rangle}$, where:

$$BUFF^N_{\langle \rangle} ::= \text{in}\?x \rightarrow BUFF^N_{\langle x \rangle}$$

$$BUFF^N_{t\langle a \rangle} ::= (\text{in}\?x \rightarrow BUFF_{t\langle x \rangle}^{N - t\langle a \rangle})$$

$$\langle \#t < N - 1 \rangle$$

$$((\text{out}\!a \rightarrow BUFF_t^N) \sqcap \text{STOP})$$

$$\square$$

$$((\text{out}\!a \rightarrow BUFF_t^N)).$$
Probabilistic CSP:

A la Morgan, McIver, Sanders and Seidel.

- Adds probabilistic choice operators $P + Q$ to untimed CSP.
- Built on top of failures-divergences model for CSP using standard domain construction.
 \[\mathcal{P}_{Pr}(FD) = \{ \mu \mid \mu \text{ probability measure on } FD \} \]
- Not all expected laws hold. For example
 \[P \cap P \neq P \quad P \oplus P \neq P \]
- Unwanted laws do hold. For example:
 \[(P + Q) \cap R = (P \cap R) + (Q \cap R). \]
 Leads to unexpected reasoning:
 \[(P_{1/3} + Q) \cap (P_{1/3} + Q) = (P_{1/3} + Q)_{1/3} + (P \cap Q) \]
 has probability $1/9 \leq p \leq 2/3$ of acting like P.
Communication over a lossy medium

PCSP model of Stop and Wait Protocol

\[S := \text{in}!x \rightarrow S' \]
\[S' := \text{out}!y \rightarrow S'' \]
\[S'' := (\text{timeout} \rightarrow S') \square (\text{in}!\text{ack} \rightarrow S) \]
\[M := (\text{timeout} \rightarrow M) \text{r+} (\text{in}!y \rightarrow \text{out}!z \rightarrow M) \]
\[R := \text{in}!z \rightarrow \text{out}!w \rightarrow \text{out}!\text{ack} \rightarrow R \]

\[P := (S \parallel M \parallel R) \backslash C \quad B = C \cup \{w, x\}, C = \{y, z, \text{ack}\} \]
\[\simeq \text{rec } X. (\text{in}!x \rightarrow \text{out}!x \rightarrow X) \]

and has probability \(r \) of losing the message on any run.
But, what if we add a router between S and the M?

$$S := \text{in}?!x \rightarrow S'$$
$$S' := \text{out}?!y' \rightarrow S''$$
$$S'' := (\text{timeout} \rightarrow S') \boxdot (\text{in}?!\text{ack} \rightarrow S)$$
$$Ro := (\text{in}?!y' \rightarrow (\text{out}?!y_1 \sqcap \text{out}?!y_2)) \rightarrow Ro$$
$$M := (t/o \rightarrow M) \mathbin{\mathbin{+}} ((\text{in}?!y_1 \Box \text{in}?!y_2) \rightarrow \text{out}?!z \rightarrow M)$$
$$R := \text{in}?!z \rightarrow \text{out}?!w \rightarrow \text{out}?!\text{ack} \rightarrow R$$

$$P := (S \parallel (Ro \parallel M) \parallel R) \setminus E$$
$$\simeq (S \parallel (M \sqcap M) \parallel R) \setminus E$$

has probability $r^2 \leq p \leq (1 - r)$ of failure.
An Alternative Approach
Joint work with Gavin Lowe (Oxford)

\[P ::= \text{STOP} \mid \text{SKIP} \mid a \rightarrow P \mid P \mathbin{||} Q \mid P \mathbin{\parallel} Q \mid P \mathbin{\square} Q \mid X \mid \text{rec } X.P \]

Denotational model:

\[F \simeq 1 \oplus \mathcal{P}_{CC}(\mathcal{P}_{Pr}(A \rightarrow F)) \equiv \lim_n (1 \oplus \mathcal{P}_{CC} \circ \mathcal{P}_{Pr})^n(1), \]

\[F_1 = \{1\}, F_2 = 1 \oplus \mathcal{P}_{CC}(\mathcal{P}_{Pr}(A \rightarrow 1)) \ldots \]

Processes are:
\[\text{STOP} \] or...

...members of a special power domain...

...over probabilistic choices of...

...(finite) partial functions from...

...A to processes

For \(a_1, a_2 \in A \), processes \(P_1, P_2 \), \& \(0 \leq r \leq 1 \)

\[\semantics{(a_1 \rightarrow P_1) \mathbin{\top} (a_2 \rightarrow P_2)} = \langle \delta_{a_1 \rightarrow \semantics{P_1}} \mathbin{\top} \delta_{a_2 \rightarrow \semantics{P_2}} \rangle \]
Laws in our model:

Nondeterministic laws:

\[P \sqcap P = P, \quad P \sqcap Q = Q \sqcap P, \]
\[(P \sqcap Q) \sqcap R = P \sqcap (Q \sqcap R). \]

\[P \Box P = P, \quad P \Box Q = Q \Box P, \]
\[(P \Box Q) \Box R = P \Box (Q \Box R). \]

A \(\sqcap \)-semilattice and a \(\Box \)-semilattice.

Probabilistic laws: \(\{ r^+ \mid 0 \leq r \leq 1 \} \) satisfy:

1. \(P \; r^+ + P = P \)
2. \(P \; r^+ + Q = Q \; 1-r^+ + P \)
3. \(P \; 1^+ + Q = P \)
4. \((P \; r^+ + Q) \; s^+ + R = P \; rs^+ + (Q \; s(1-r) + R) \frac{1}{1-rs} \)

(if \(rs < 1 \))

A probabilistic algebra.
Laws that don’t hold:

\[
\begin{align*}
a \rightarrow (P \cap Q) & \neq (a \rightarrow P) \cap (a \rightarrow Q) \\
a \rightarrow (P \vdash Q) & \neq (a \rightarrow P) \vdash (a \rightarrow Q) \\
(P \vdash Q) \parallel R & \neq (P \parallel R) \vdash (Q \parallel R)
\end{align*}
\]

For example:

\[
(P \vdash Q) \parallel_C (d \rightarrow (P \cap Q))
\]

should equal

\[
d \rightarrow ((P \vdash Q) \parallel_C (P \cap Q))
\]

if \(d \notin C \). Instead,

\[
(P \vdash Q) \parallel_C R = (P \parallel_C R) \vdash (Q \parallel_C R)
\]

implies \((P \vdash Q) \parallel_C (d \rightarrow (P \cap Q))\) resolves \(P \vdash Q \) before \(P \cap Q \) even if \(d \notin C \).
Moral:
\[a \rightarrow - \quad \text{and} \quad \parallel_C \]
must be defined at the \(\mathcal{P}_{CC} \)-level in
\[\mathcal{P}_{CC}(\mathcal{P}_{Pr}(A \rightarrow F)). \]

But, in our model,
\[
\begin{align*}
P & := (S \parallel (R_{o} \parallel M) \parallel R) \backslash E \\
& \simeq (S \parallel (M \cap M) \parallel R) \backslash E \\
& = (S \parallel M \parallel R) \backslash E
\end{align*}
\]
has probability \(r \) of failure.

Work to be done:
- Validate the denotational model.
- Devise operational model and prove congruence theorem.
- Devise logic for reasoning about processes.
Hybrid Systems

Variables - \((x_1, \ldots, x_n) \in \mathbb{R}^n, n = \text{dimension}\).

Control graph: A finite, directed multigraph \((V, E)\). The nodes of \(V\) are the locations.

State space: \(V \times \mathbb{R}^n\).

Initial, invariant and flow conditions:
- \textit{init} defines a set of initial states.
- \textit{inv} assigns invariant region to each location.
- \textit{flow} assigns flow conditions to each location. These govern the behavior of the real variables for that location.

Jump conditions: Conditions on \((x_1, \ldots, x_n)\) under which jump is enabled.

Events: \textit{event}: \(E \rightarrow \Sigma\) labels jumps.
A Thermostat

- variable $x \in \mathbb{R}$ temperature
- locations Off and On

Initial state:
- Off: $x = 20$

Invariant regions:
- Off: $x \geq 18$
- On: $x \leq 22$

Flow conditions:
- Off: $\dot{x} = -0.1x$
- On: $\dot{x} = 5 - 0.1x$

Enabled regions:
- Off: $x < 19$
- On: $x > 21$
Basic questions

Safety - What regions are reachable?
Liveness - Are there infinite runs?

Standard Approach: Devise discrete abstractions with equivalent behavior, and for which questions are decidable.

Language equivalences preserve LTL properties.

Bisimulation equivalences preserve CTL properties.
Hybrid Systems

A system is *initialized* if, whenever a jump changes the flow condition for a variable, then the jump reinitializes the variable.

An automaton is *rectangular* if all invariant and flow regions are products of intervals defined by rational numbers.

A rectangular automaton is *multirate* if
- each location has at most one initial state,
- jumps are deterministic, and
- flows are constant at each location.

A *timed automaton* is a multirate automaton for which $\dot{x} = 1$ for all variables x.

A simple example of a timed automaton T.

Invariant regions:
- l_1: $x, y \in [0, 5)$
- l_2: $x, y \in [0, 10)$

Flow conditions:
- $\dot{x} = \dot{y} = 1$.

```
Invariant regions:
- l1: x, y \in [0, 5)
- l2: x, y \in [0, 10)
Flow conditions:
- \dot{x} = \dot{y} = 1.
```

\[x=0 \quad y=0 \]
\[l_1 \rightarrow l_2 \]
\[e_1: x>4 \Rightarrow x:=x/2, y:=y+3 \]
\[e_2: y>9 \Rightarrow x:=x/3, y:=y/4 \]
Hybrid Systems

Theorems:
- [Alur & Dill] The reachability problem and the \(\omega \)-language emptiness problem for timed automata are decidable.

- [Henzinger, et al] LTL and CTL reachability problems for initialized multirate automata are decidable subject to the region in question being either a location or a rectangular set.

- [Henzinger, et al] The reachability problem for uninitialized multirate automata with one stopwatch and all other variables clocks is undecidable.

Question: How can one analyze hybrid systems for which these problems are undecidable?
From Hybrid Systems to PCSP

\[x=0 \quad e_1: \ x>4 \Rightarrow x:=x/2, y:=y+3 \]
\[y=0 \quad e_2: \ y>9 \Rightarrow x:=x/3, y:=y/4 \]

Defining a probabilistic approximation to \(T \):

1) Partition \([0, 5)\) into: \(x_1 = [0, 3), x_2 = [3, 4), x_3 = (4, 4.5), x_4 = [4.5, 4.8) \) and \(x_5 = [4.8, 5) \).

2) Partition \([0, 10)\) into:
\(y_1 = [0, 5), y_2 = (5, 9), y_3 = (9, 9.7) \) and \(y_4 = [9.7, 10) \).

3) Use the flow conditions to assign probabilities to each subregion: these are clocks, so we use normalized Lebesgue measure on each interval:

<table>
<thead>
<tr>
<th>Location and Variables</th>
<th>Interval</th>
<th>Probability</th>
<th>Jumps</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l_1) & (x)-subintervals:</td>
<td>([0, 3))</td>
<td>.6</td>
<td>(a_1)</td>
</tr>
<tr>
<td></td>
<td>([3, 4])</td>
<td>.2</td>
<td>(a_2)</td>
</tr>
<tr>
<td></td>
<td>((4, 4.5))</td>
<td>.1</td>
<td>(a_3)</td>
</tr>
<tr>
<td></td>
<td>([4.5, 4.8))</td>
<td>.06</td>
<td>(a_4)</td>
</tr>
<tr>
<td></td>
<td>([4.8, 5))</td>
<td>.04</td>
<td>(a_5)</td>
</tr>
<tr>
<td>(l_2) & (y)-subintervals:</td>
<td>([0, 5))</td>
<td>.5</td>
<td>(b_1)</td>
</tr>
<tr>
<td></td>
<td>([5, 9])</td>
<td>.4</td>
<td>(b_2)</td>
</tr>
<tr>
<td></td>
<td>((9, 9.7))</td>
<td>.07</td>
<td>(b_3)</td>
</tr>
<tr>
<td></td>
<td>([9.7, 10))</td>
<td>.03</td>
<td>(b_4)</td>
</tr>
</tbody>
</table>
4) Define two subprocesses:
\(P \) – representing \(l_1 \), and \(Q \) – representing \(l_2 \).

Further refine \(P \) and \(Q \) into subprocesses:

There are five representing restrictions of \(P \):
\[
P_1 = P|_{[0,5)}, \ P_2 = P|_{[3,5)}, \ P_3 = P|_{(4,5)}, \\
P_4 = P|_{[4.5,5)} \text{ and } P_5 = P|_{[4.8,5)}.
\]

Similarly, there are four subprocesses for \(Q \):
\[
Q_1 = Q|_{[0,10)}, \ Q_2 = Q|_{[5,10)}, \ Q_3 = Q|_{[9,10)} \text{ and } Q_4 = Q|_{[9.7,10)}.
\]

5) Define mutually recursive equations:

\[
P := (a_1 \rightarrow P_2).6 + ((a_2 \rightarrow P_3).5 + \\
((a_3 \rightarrow (P_4 \sqcap Q_2))).5 + \\
((a_4 \rightarrow (P_5 \sqcap Q_6)).6 + (a_5 \rightarrow Q_6)))
\]

\[
Q := (b_1 \rightarrow Q_2).5 + ((b_2 \rightarrow Q_3).8 + \\
((b_3 \rightarrow (Q_4 \sqcap P_3))).35 + (b_4 \rightarrow P_4))
\]

6) The \(PCSP \) process \(R \) that approximates \(T \) is the solution to the system in 5).
From Hybrid Systems to PCSP

Theorem [Alvarez-Manilla]
If X is locally compact, then any probability distribution μ on X is the supremum of an increasing family of simple measures $\sum_{i=1}^{n} r_i \delta x_i$, where $\sum r_i = 1$.

Corollary Any probability distribution on X can be approximated arbitrarily closely by PCSP processes.

Partition X so that each x_i is in a unique element, then use procedure of previous slide.

In other words, given probability distributions on each invariant region representing the flow conditions, we can realize the behavior as a limit of PCSP-processes.

Question: Is this limit a process?
How to analyze PCSP?

Formulation of CTL in terms of predicate transformers:

- S - states,
- $\mathcal{P}(S) = \{0, 1\}^S$ - predicates over S,
- $\text{prog}: \mathcal{P}(S) \to \mathcal{P}(S)$ - predicate transformers - programs.

$\text{prog}(A) = \text{wp}.\text{prog}.A$

Healthiness conditions:

- $\text{prog}(\emptyset) = \emptyset$ - excluded miracle
- $A \subseteq B \Rightarrow \text{prog}(A) \subseteq \text{prog}(B)$ - monotone
- $\text{prog}(A \cap B) = \text{prog}(A) \cap \text{prog}(B)$ - positively conjunctive

Modal operators for CTL

- $\text{Next} - \diamond A := \text{prog}(A)$
- $\text{Eventually} - \Diamond A := \mu X. (A \cup \diamond X)$ - least fixed point
- $\text{Always} - \Box A := \nu X. (A \cap \diamond X)$ - greatest fixed point
- $\text{Unless} - A \triangleright B := \nu X. B \cup (A \cap \diamond X)$

Theorem:
System satisfies axioms that are complete for standard branching time temporal logic.

For example,

$\Box (A \Rightarrow B) \Rightarrow (\Box A \Rightarrow \Box B)$ and $(\Box A \Rightarrow B) \land \diamond A \Rightarrow \diamond B$
How to analyze PCSP?

McIver and Morgan: *Quantitative* temporal logic $q\text{TL}$ for reasoning about *probabilistic processes with demonic nondeterminism* in terms of *expectation transformers*:

- S - states,
- $\mathcal{E}(S) = [0, 1]^S$ - expectations over S,
- $\text{prog}: \mathcal{E}(S) \to \mathcal{E}(S)$ - expectation transformers - *programs*.

For deterministic $\text{prog}: S \to [0, 1]^S$, $s_0 \in S$ and $X \subseteq S$, $\text{prog}(s_0)(X) \in [0, 1]$

For deterministic $\text{prog}: S \to [0, 1]^S \land E \in \mathcal{E}(S)$,

$$\text{prog}(E) = \int E \text{ d}.\text{prog}(-): S \to [0, 1]$$

Kozen, 1983

For nondeterministic prog

$$\text{prog}(E) = \bigcap_{\text{prog} \leq \mu} \int E \text{ d}.\mu$$
How to analyze PCSP?

How to compare expectations:
\(E \supseteq F \) - everywhere no more than
\(E \subseteq F \) - everywhere no less than
\(E \equiv F \) - everywhere equal.

Healthiness conditions:

\[
\text{prog}(E) \implies \Box E \quad \text{excluded miracle}
\]
\[
E \supseteq F \implies \text{prog}(E) \supseteq \text{prog}(F) \quad \text{monotone}
\]
\[
\text{prog}(E \not\!
ot\!
ot\not F) = \text{prog}(E) \not\!
ot\!
ot\not \text{prog}(F) \quad \text{subdistributivity}
\]

Modal operators for qTL

Next \(-\quad \Diamond E := \text{prog}(E)\)

Eventually \(-\quad \Diamond E := \mu X.(E \lor \Diamond X) \quad \text{least fixed point}\)

Always \(-\quad \Box E := \nu X.(E \land \Diamond X) \quad \text{greatest fixed point}\)

Unless \(-\quad E \triangleright F := \nu X.F \lor (E \land \Diamond X)\)
How to analyze PCSP?

Theorem: [Vardi’s 0-1 Law]
Almost certain properties in linear temporal logic depend only on the probabilities being strictly between 0 and 1.

Morgan and McIver obtain 0–1 Laws for their logic. For example:

1) If $0 < r < 1$

$$\text{rec } X.(a \rightarrow X) \uparrow (b \rightarrow X)$$

has probability 1 of executing a and probability 1 of executing b

2) $p_n = \text{rec } X.(a \rightarrow \text{STOP}) \uparrow n^2 \uparrow ((n := n+1) \rightarrow X)$

has probability $\frac{1}{n}$ of executing a.

27
Summary

We have described

– A model for probabilistic CSP that validates desirable laws,

– A method for translating hybrid systems into PCSP processes,

– A quantified temporal logic for reasoning about PCSP processes that also has 0–1 Laws.

Goal: Analyze hybrid systems using these tools to gain insights into their behavior.

In particular, can we make almost sure assertions about reachability and liveness using this approach?