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Abstract. We develop several combinatorial models that are useful in the study of the SLn-variety X of

complete quadrics. Barred permutations parameterize the fixed points of the action of a maximal torus T
of SLn, while µ-involutions parameterize the orbits of a Borel subgroup of SLn. Using these combinatorial

objects, we characterize the T -stable curves and surfaces on X , compute the T -equivariant K-theory of X ,
and describe a Bia lynicki-Birula cell decomposition for X . We also provide an algorithm for the analogue

of Bruhat order on the Borel orbits in X .

1. Introduction

The variety of complete quadrics has a rich history in algebraic geometry, dating back to its use by
Chasles to determine the number, 3264, of plane conics tangent to five given conics [11]. This classical
problem has gained further exposure as the impetus for the title of a new text on intersection theory [14].
The variety of complete quadrics also plays a pivotal role in the theory of spherical varieties, where it serves
as the motivating example for wonderful spherical varieties, first introduced in [13]. In this paper, we discuss
several combinatorial models that are useful in characterizing fundamental geometric properties of the variety
of complete quadrics.

Let n be a natural number. The variety X of compete quadrics in n variables is equipped with an action
of the special linear group SLn. The SLn-orbits of X are naturally parameterized by compositions of n. For
a fixed composition µ, the SLn-orbit Oµ possesses a finer decomposition into orbits under a Borel subgroup
B of SLn. The B-orbits in Oµ are parameterized by combinatorial objects called µ-involutions. Roughly,
these are permutations of 1, 2, . . . , n that, when subdivided into strings whose lengths are given by the parts
of µ, have each string represent an involution of its alphabet.

A degenerate involution of length n is a µ-involution for some composition µ of n. Thus, the set of all B-
orbits on X is parameterized by degenerate involutions of length n. Given a degenerate involution π, let X π
denote the closure of the B-orbit associated to π. Extrapolating from the observation that the Bruhat order
on the symmetric group Sn can be identified with the inclusion order on Schubert varieties in the complete
flag variety, we define an analogue of Bruhat order on the set of degenerate involutions. Namely, π ≤ π′

if and only if X π ⊆ X π′ . In Section 5, we summarize what is known about Bruhat order for degenerate
involutions and give Algorithm 3 which can be used to test whether a given degenerate involution is less
than or equal to another degenerate involution.

The second combinatorial object that we introduce is the notion of a barred permutation. Barred permu-
tations parameterize the fixed points of a maximal torus T ⊆ B of SLn. Because each B-orbit has at most
one T -fixed point, barred permutations can be thought of as certain degenerate involutions. A degenerate
involution is a barred permutation if the associated composition has only 1’s and 2’s as its parts and if
whenever it has a part of length 2, the corresponding string is decreasing, corresponding to the non-trivial
involution of the two numbers.

Using these notions, we describe several key geometric features of X . We prove the following characteri-
zation of T -stable curves and surfaces on X (see Section 4).

Theorem 1.1. All T -stable curves on X are isomorphic to P1 and all T -stable surfaces on X are isomorphic
to P2.
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If a T -stable curve C on X is not contained on a T -stable surface, then its two T -fixed points correspond
to barred permutations (of the same composition type µ) which differ by interchanging two numbers i and
j in different strings. The weight of C is the root αij := εi − εj in the notation of [4].

A T -stable surface Y on X has three T -fixed points whose corresponding barred permutations correspond
to two composition types µ and µ′. Then µ′ is obtained from µ by refinement, replacing a single part 2 with
two 1 parts. If ji is the string in that part of the barred permutation of type µ, then the other two barred
permutations are identical except that the string ji becomes i|j or j|i. The codimension one torus whose
kernel is the root αij fixes each point in Y pointwise.

Using this result and work of Banerjee-Can [1], we are able to give a complete description of the T -
equivariant K-theory of X in Theorem 4.9.

Our combinatorial objects are also used to study a Bia lynicki-Birula decomposition of X , which decom-
poses X into a union of affine cells based on the flow along an admissible one-parameter subgroup toward
T -fixed points on X . The structure of Bia lnicki-Birula cells for spherical varieties is studied in various
degrees of generality: for smooth projective spherical varieties, by Brion-Luna [7]; for wonderful compactifi-
cations of symmetric varieties, by De Concini-Springer [12] and for the variety X , by Strickland [19]. In the
latter work, Strickland enumerates the number of cells of each dimension. A key result of [7] implies that the
intersection of a Bia lynicki-Birula cell on X with an SLn-orbit is either empty or equal to a single B-orbit.

We provide two combinatorial maps that describe which B-orbits on X constitute each Bia lynicki-Birula
cell. The two maps τ , which sends degenerate involutions to barred permutations, and σ, which sends barred
permutations to degenerate involutions, have the following geometric interpretations. Given a degenerate
involution π, τ(π) is the barred permutation parameterizing the unique T -fixed point in the cell containing the
B-orbit of π (Proposition 6.3). Conversely, given a barred permutation β, σ(β) is the degenerate involution
corresponding to the B-orbit which is dense in the cell flowing to the T -fixed point parameterized by β
(Propsition 6.5).

We also characterize Bruhat order for degenerate involutions, using ideas of Richardson-Springer [17],
Timashev [20] and Brion [6]. Algorithm 3 tests whether two degenerate involutions are comparable in
Bruhat order. The restriction of Bruhat order to µ-involutions for a fixed µ coincides with the opposite of
the usual Bruhat order on permutations when µ = (1, 1, . . . , 1), in which case the degenerate involutions are
identified with permutations, and when µ = (n), in which case the corresponding degenerate involutions are
identified with ordinary involutions [18]. However, we show that the same property does not hold for all µ
in general.

We now describe the organization of the paper. In Section 2 we give some background information. Our
definition of degenerate involutions is found in Definiton 2.3. Section 3 introduces barred permutations and
counts the number of barred permutations of given length. In Section 4 we describe the T -stable curves and
surfaces on X , culminating in a description of the T -equivariant and SLn-equivariant K-theory of X . Then
we discuss Bruhat order on degenerate involutions and give an algorithm to compute it in Section 5. Finally,
we study properties of cell decompositions in Section 6.

2. Combinatorial and geometric preliminaries

Let n be a positive number. The ordered set {1, . . . , n} is denoted by [n]. All algebraic groups and
varieties are defined over C for convenience, but our results can be extended over any algebraically closed
field of characteristic 6= 2.

All posets are assumed to be finite and assumed to have a maximal and minimal element. Recall that
such a poset P is graded if every maximal chain in P has the same length. We denote by rk : P → N the
rank function on P so that for x ∈ P , rk(x) is the length of a maximal chain from the minimal element to
x. The rank of a graded poset P , denoted by rk(P ), is defined to be the rank of the maximal element.

When a solvable group B acts on a projective variety with finitely many orbits, the poset consisting of
irreducible B-stable subvarieties with respect to inclusion ordering is almost a graded poset [16, Exercise
8.9.12]. The only subtlety is that there may be more than one minimal element. In this paper, the posets
we consider always have a unique minimal element, so we do not concern ourselves with this issue.

Throughout this paper, we let G be a reductive algebraic group. We denote by T , B, and W a maximal
torus of G, a Borel subgroup of G containing T , and the Weyl group W := NG(T )/T of G. When G =
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SLn, the special linear group of n × n matrices with determinant 1, we take T to be the subgroup of
diagonal matrices and B to be the subgroup of upper triangular matrices. In this case, the Weyl group W
is identified with Sn, the symmetric group of permutations on n letters. We write the cycle representation
of a permutation using parentheses and its one-line notation using brackets. For example, both (3, 5) and
[125436] denote the permutation in S6 that interchanges 3 and 5 while fixing the other four numbers. The
length of a permutation w ∈ Sn, denoted `(w), is the number of inversions of w, that is to say the number
of pairs (i, j) with 1 ≤ i < j ≤ n and w(i) > w(j).

2.1. Bruhat-Chevalley order for involutions. An involution is an element of Sn of order ≤ 2. We
denote by In the set of involutions in Sn. The elements of In are in one-to-one correspondence with B-orbits
in the quasi-projective variety of non-degenerate quadric hypersurfaces in An. Under this correspondence,
an involution π with two-cycles (a1, b1), . . . , (ak, bk) and one-cycles c1, . . . , cm corresponds to the B-orbit of
the distinguished quadric Qπ := xa1xb1 + · · · + xakxbk + x2c1 + · · · + x2cm . Therefore, similar to the Bruhat
ordering on Sn, there is an induced Bruhat order on involutions given by inclusion of B-orbit closures. The
Bruhat order on In agrees with the opposite of the restriction of Bruhat order on Sn [18].

The Bruhat order on In is graded, but with a different rank function [15]. Explicitly, for π ∈ In, the
corank function is given by

(1) L(π) = L(n)(π) :=
`(π) + exc(π)

2
,

where exc(w), the exceedance of w ∈ Sn, is defined by

exc(w) := #{i ∈ [n] : w(i) > i}.

Thus, the rank function is given by rank(π) := L(min) − L(π), where min is the involution k 7→ n + 1 − k.
Note that the exceedance of an involution is the number of 2-cycles that appear in its cycle decomposition.

2.2. The variety of complete quadrics. A G-variety is said to be spherical if it contains a dense B-orbit.
The variety X0 of non-singular quadric hypersurfaces in Pn−1 is a spherical and homogeneous SLn-variety.
Explicitly, by identifying a non-singular quadratic hypersurface Q in n variables with a full rank n × n
symmetric matrix A such that

Q(x1, x2, . . . , xn) =
(
x1 x2 . . . xn

)
A


x1
x2
. . .
xn

 ,

up to scalar multiplication, the action is given by g · [A] = [gAgT ] for g ∈ SLn, where gT is the transpose of
g. Then the stabilizer of Qid = x21 + x22 + · · ·+ x2n, which corresponds to A = In, the n× n identity matrix,
is the special orthogonal group SOn.

It is natural to study completions of X0, and while the projectivization of all nonzero n × n symmetric
matrices (adding the singular quadric hypersurfaces to the boundary) is one such completion, there is a more
useful completion to consider, namely the wonderful embedding of X0.

In general, if X is a smooth complete G-variety, and X0 ⊂ X is a homogenous G-subvariety which is
dense in X, then X is called a wonderful embedding of X0 if

(1) X \ X0 is the union of finitely many G-stable smooth codimension one subvarieties Xi for i =
1, 2, . . . , r;

(2) for any I ⊂ [r], the intersection XI :=
⋂
i/∈I

Xi is non-empty, smooth and transverse;

(3) every irreducible G-stable subvariety of X has the form XI for some I ⊂ [r].

If a wonderful embedding ofX0 exists, then it is unique up toG-equivariant isomorphism and it isG-spherical.
The variety of complete quadrics, X := Xn, is classically defined as the closure of the image of the map

X0 →
n−1∏
i=1

P(Λi(Symn)),

[A] 7→ ([A], [Λ2(A)], . . . , [Λn−1(A)]),
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where A denotes the full rank n× n symmetric matrix defining a non-singular quadric hypersurface in X0.
The connection between this classical definition and wonderful embeddings is made in the second half of

the following theorem.

Theorem 2.1. (1) [21] Xn can be obtained by the following sequence of blow-ups: in the naive projective
space compactification of X0, first blow up the locus of rank 1 quadrics; then blow up the strict
transform of the rank 2 quadrics; . . . ; then blow up the strict transform of the rank n− 1 quadrics.

(2) [13] Xn is the wonderful embedding of X0 := SLn/SOn and the spherical roots of Xn are twice the
simple positive roots of the type An−1 root system.

2.3. Orbits in the variety of complete quadrics. A composition of n is an ordered sequence µ =
(µ1, . . . , µk) of positive integers that sum to n. The elements of the sequence are called the parts of µ. The
compositions of n are in bijection with the subsets of [n− 1] via

(2) µ = (µ1, . . . , µk)←→ I(µ) := [n] \ {µ1, µ1 + µ2, . . . , µ1 + · · ·+ µk−1}.
The correspondence gives a simple means to define the refinement order on compositions of n. A composition
µ of n refines a composition ν of n, denoted µ � ν, if and only if I(µ) ⊆ I(ν). Informally, µ refines ν if µ can
be obtained from ν by subdividing its parts. Also note that because of the use of the complement to define
I(µ), the most refined composition, (1, 1, . . . , 1) is the minimal element under �. Using this non-standard
bijection to define I(µ) is convenient for describing the geometry of the variety of complete quadrics.

The SLn-orbits of Xn are parameterized by compositions of n; we let Oµ denote the associated G-orbit
and X µ the closure of Oµ in Xn. The refinement order on compositions corresponds to the inclusion order
on SLn-orbit closures: X µ ⊆ X ν ⇐⇒ µ � ν. The composition µ = (n) corresponds to the open SLn-orbit of
smooth quadrics in Pn−1, while the composition µ = (1, 1, . . . , 1) corresponds to the unique closed SLn-orbit,
isomorphic to the variety of complete flags in the fixed n-dimensional vector space Cn.

Concretely, a complete quadric Q corresponds to giving a partial flag

F : 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk−1 ⊂ Vk = Cn

and for each 1 ≤ j ≤ k a smooth quadric hypersurface in P(Vj/Vj−1). Letting ij := dimVj , the set
I = [n]\{i1, i2, . . . , ik−1} corresponds to a composition µ via (2) and Q ∈ Oµ. The natural map which sends
Q to F is a morphism p̃µ : Oµ → Flags(µ), where Flags(µ) is the variety of partial flags whose dimensions are
given by µ as above, which extends to a morphism pµ : X µ → Flags(µ). The extension is defined by sending
a complete quadric Q in Oν first to the flag p̃ν(Q) and then applying the forgetful map Flags(ν)→ Flags(µ),
since ν must be a refinement of µ.

Fix a composition µ = (µ1, µ2, . . . , µk) of n. We now describe the B-orbits within the SLn-orbit Oµ.
They are parameterized by combinatorial objects called µ-involutions.

Definition 2.2. A µ-involution π is a permutation of the set [n], which when written in one-line notation
and partitioned into strings of size given by µ, that is π = [π1|π2| . . . |πk] with πj a string of length µj ,
has the property that each πj is an involution when viewed as the one-line notation of a permutation of its
alphabet. We denote by Iµ the set of µ-involutions.

For example, π = [26|8351|7|94] is a (2, 4, 1, 2)-involution and the string 8351 is viewed as one-line notation
for the involution (1, 8)(3)(5) of its alphabet. (We adopt the non-standard convention of including one-cycles
when writing a permutation in cycle notation, since we have to keep track of what alphabet is being permuted
when working with µ-involutions.)

Definition 2.3. Let π = [π1|π2| . . . |πk] be a µ-involution. Associated to π is a distinguished complete
quadric Qπ. The flag type of Qπ is given by I(µ), namely the associated flag

0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk−1 ⊂ Vk = Cn

has dimVj = µ1 +µ2 + · · ·+µj for 1 ≤ j ≤ k. Let Aj denote the set of numbers that appear in the string πj .

Let e1, e2, . . . , en denote the standard basis of Cn. Then Vj is spanned by the vectors er for r ∈
j⋃
i=1

Aj . Note

that Vj/Vj−1 is spanned by the standard basis vectors er with r ∈ Aj . The involution πj then determines
the non-degenerate quadric in P(Vj/Vj−1) as in the usual correspondence between involutions and quadrics.
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Namely, suppose πj consists of two-cycles (a1, b1), . . . , (as, bs) and one-cycles c1, . . . , ct. Then the associated
quadric is xa1xb1 + · · ·+ xasxbs + x2c1 + . . . x2ct .

Returning to the example above and letting Vi1i2···is stand for the subspace spanned by ei1 , ei2 , . . . , eis ,
the distinguished quadric Qπ associated to π = [26|8351|7|94] consists of the flag

0 ⊂ V26 ⊂ V123568 ⊂ V1235678 ⊂ C9

and the associated sequence of non-degenerate quadrics is x22 + x26, x1x8 + x23 + x25, x
2
7, x4x9.

The B-orbit through the distinguished quadric Qπ is denoted Oπ and its closure is denoted X π. Note
that the SLn-orbit Oµ is a disjoint union of B-orbits Oπ as π ranges over all µ-involutions.

2.4. Torus actions on spherical varieties. We recall some standard results about reductive algebraic
groups [3]. Recall that we set G to denote a reductive group containing a Borel subgroup B and maximal
torus T ⊆ B. Given any set A ⊂ G, CG(A) denotes the centralizer of A in G, namely the elements g ∈ G
such that gag−1 = a for all a ∈ G.

An element g ∈ G is called regular if dimCG(g) is minimal, in which case it equals rank(G) := dimT . A
torus S in G is called regular if S contains a regular element of G and S is called singular if S is contained in
infinitely many Borel subgroups of G. Since G is reductive, every torus of G is either regular or singular. A
maximal torus T of G is always regular, while a maximal singular subtorus S of T necessarily has codimension
one and is equal to the kernel of a root α : T → C∗.

Let S ⊆ T denote a codimension one subgroup, and let CG(S) denote the centralizer of S, which is a
connected reductive group. If S is regular, CG(S) = T , and if S is singular, then CG(S) has semisimple
rank one. If S normalizes B, then CB(S) is a Borel subgroup of CG(S) and conversely any Borel subgroup
of CG(S) has the form CB(S) for a Borel subgroup B that normalizes S.

Suppose that G acts on an algebraic variety X with finitely many orbits. Then the fixed locus XT is
finite [13, §7.3]. For any subtorus S ⊆ T , the fixed locus XS is stable under the action of CG(S). We now
recall structural properties of XS when S has codimension one [5, 1].

Let x ∈ XS . Then the intersection of the B-orbit of x with XS is equal to the CB(S) orbit of x. Moreover,
any irreducible component of XS is a spherical CG(S) variety.

If S is a regular torus of codimension one in T , then any irreducible component of XS is isomorphic to a
point or P1.

Now suppose that S is a singular torus of codimension one in T . Then CG(S) is the product of T and
a subgroup Γ isomorphic to SL2 or PSL2. In either case, Γ is the homomorphic image of SL2, so any
irreducible component Y of XS is a spherical SL2-variety. Choose a point y ∈ Y such that SL2 · y is open
in Y , and let H ⊆ SL2 denote the stabilizer subgroup of y. If Y is not an isolated point, then there are four
possibilities for H:

(1) If H is a Borel subgroup of SL2, then Y is isomorphic to P1.
(2) If H is a one-dimensional torus in SL2, then Y is isomorphic to P1 × P1.
(3) If H is the normalizer of a one-dimensional torus in SL2, then Y is isomorphic to P2.
(4) If H is the product of a one-dimensional unipotent subgroup and a finite cyclic subgroup of a torus

in SL2, then Y is a Hirzebruch surface.[5]

2.5. Weak Order for µ-involutions. Fix a composition µ = (µ1, . . . , µk) of n. The length of a µ-involution
π = [π1|π2| . . . |πk] is defined to be

(3) Lµ(π) := `(w(π)) +

k∑
i=1

L(πi),

where w(π) is the permutation obtained by rearranging the elements in each string πi in increasing order
and L(πi) is the length of the corresponding involution πi as defined by (1). For example, if π = [5326|41],
then w(π) = 235614 and L(4,2)(π) = 6 + 2 + 1 = 9. Let min (resp, max) denote the string n . . . 21 (resp.,
12 . . . n) partitioned according to µ. These will be the minimum and maximum elements of weak order on
µ-involutions defined below.

The Richardson-Springer monoid of Sn, M(Sn), is defined to be the monoid generated by elements
s1, . . . , sn−1 subject to the relations that s2i = si for all i, sisj = sjsi if |i− j| > 1, and sisi+1si = si+1sisi+1

5



for 1 ≤ i < n − 1. (Note the notational ambiguity of si standing for the simple transposition in Sn
interchanging i and i + 1 and the generator of M(Sn). It should be clear from context which meaning is
meant in the sequel.) The elements of M(Sn) are in bijection with the elements of Sn, with the element
w ∈ Sn associated to the element of M(Sn) given by si1si2 · · · si` for any reduced decomposition of Sn.
There is a natural action of the Richardson-Springer monoid of Sn on the set of all B-orbits in Oµ, and
consequently on the set of all µ-involutions [17]. In the case where π is an ordinary involution of Sn (i.e.
when µ = (n)), the action of a simple transposition si interchanging i and i+ 1 is given by

(4) si · π =


siπsi if `(siπsi) = `(π)− 2

siπ if siπsi = π and `(siπ) = `(π)− 1

π otherwise

.

If π = [π1|π2| . . . |πk] is a general µ-involution, then there are two cases for the computation of si · π. If i
and i+ 1 belong to the same string πr of π, then si · π is obtained by fixing all other πj ’s and replacing πr
with si · πr as defined by (4). If i and i + 1 belong to different strings then si · π is equal to the result of
interchanging i and i+ 1 if i+ 1 precedes i in π and is equal to π otherwise.

To define w · π for an arbitrary w ∈ Sn and arbitrary µ-involution π, let w = si1si2 · · · si` be any reduced
decomposition of w. Then w · π := si1 · (si2 · · · · (si` · π) · · · ). Because the action of simple transpositions
respects the braid relations associated to the Richardson-Springer monoid of Sn, it is easily checked that
this definition is independent of the choice of reduced decomposition.

Let G be a complex reductive algebraic group with Borel subgroup B, and let X be a spherical G-variety.
Let Y be an irreducible B-stable subvariety of X and let w ∈W be a Weyl group element. The map

BwB × Y → BwY

(g, y) 7→ gy

is invariant with respect to the action of B defined by b · (g, y) = (gb−1, by). Let BwB ×B Y denote the
corresponding quotient and let

πY,w : BwB ×B Y → BwY

denote the induced morphism [(g, y)] 7→ gy. Note that since BwB/B is complete, πY,w is proper, hence
surjective. The W -set of Y is defined to be

W (Y ) := {w ∈W : πY,w is generically finite, BwY is G-invariant}.(5)

There is a more combinatorial interpretation of W -sets which essentially follows from [6, Lemma 1.2]. For
two µ-involutions π and ρ, π ≤ ρ in weak order if and only if ρ = w ·π for some w in the Richardson-Springer
monoid of Sn. Covering relations in weak order are labeled by simple roots. By definition, a B-orbit closure
Y ′ covers another B-orbit closure Y in the weak order if there exists a minimal parabolic subgroup P = Pα
corresponding to a simple root α such that Y ′ = PY . The label of this covering is α. For each maximal chain
starting at a µ-involution π ending at max in weak order there is a Weyl group element that is obtained by
multiplying in order, right to left, the simple reflections corresponding to the labels (starting at π). The set
of all w ∈W obtained this way constitutes the W -set of π, denoted W (π) [8, 9, 10]. Explicitly,

W (π) = {w ∈ Sn : w · π = max and `(w) = Lµ(π)}.

2.6. Bia lynicki-Birula Decomposition. We recall the Bia lynicki-Birula decomposition, or BB decompo-
sition for short, associated to a smooth projective variety with the action of a one-parameter subgroup. Let
X be a smooth projective variety on which an algebraic torus T acts with finitely many fixed points. Let
λ : C∗ → T be a one-parameter subgroup such that Xλ = XT . For p ∈ Xλ, define the sets

C+
p = {y ∈ X : lim

s→0
λ(s) · y = p}

and

C−p = {y ∈ X : lim
s→∞

λ(s) · y = p},

called the plus and minus cells of p, respectively.

Theorem 2.4 ([2]). If X, T and λ are as above, then
6



(1) both of the sets C+
p and C−p are locally closed subvarieties in X, furthermore they are isomorphic to

an affine space;
(2) if TpX is the tangent space of X at p, then C+

p (resp., C−p ) is λ-equivariantly isomorphic to the

subspace T+
p X (resp., T−p X) of TpX spanned by the positive (resp., negative) weight spaces of the

action of λ on TpX.

As a consequence of the BB-decomposition, there exists a filtration

Xλ = V0 ⊂ V1 ⊂ · · · ⊂ Vn = X, n = dimX,

of closed subsets such that for each i = 1, . . . , n, Vi \ Vi−1 is the disjoint union of the plus (resp., minus)
cells in X of dimension i. It follows that the odd-dimensional integral cohomology groups of X vanish, the
even-dimensional integral cohomology groups of X are free, and the Poincaré polynomial

PX(t) :=

2n∑
i=0

dimHi(X;C)ti

of X is given by

PX(t) =
∑
p∈Xλ

t2 dimC+
p =

∑
p∈Xλ

t2 dimC−p .

3. Barred permutations

In this section we give a parametrization of the torus fixed points in X.

Definition 3.1. A composition µ of n is special if every part of µ is either 1 or 2. Equivalently, µ is special
if the associated subset I(µ) does not contain any consecutive numbers.

Note that any refinement of a special composition is also a special composition. Special compositions are
used to characterize the SLn-orbits of Xn which contain T -fixed points. Indeed, a composition µ is special
if and only if the orbit Oµ contains a T -fixed point [19].

Since an orbit of B with isolated T -fixed points has exactly one T -fixed point, in order to parameterize
the T -fixed points in Xn, it suffices to make explicit the µ-involutions of those B-orbits which contain a
T -fixed point.

Definition 3.2. Let µ be a composition of n with k parts. We call a µ-involution α = [α1| · · · |αk] a barred
permutation if the length of each αj (as a string) is at most 2 and whenever αj = i1i2 has length two,
then i1 > i2. The length of α is n. We let Bn denote the set of barred permutations of length n and put
bn := #Bn.

Lemma 3.3. Let µ be a composition of n and let π be a µ-involution. Then the B-orbit Oπ contains a
T -fixed point if and only if π is a barred permutation, in which case the T -fixed point is the distinguished
quadric Qπ.

Proof. Let µ = (µ1, . . . , µk) be the given composition of n, and let ei denote the ith standard basis vector
of Cn. We already know that when there is a T -fixed point in the B-orbit Oπ for some µ-involution
π = [π1| · · · |πk], the length of each string in π is at most 2.

Let Q denote a T -fixed complete quadric belonging Oπ, consisting of a flag

F : 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vk−1 ⊂ Vk = Cn

of type µ (meaning dimVj/Vj−1 = µj) and a sequence Q1, . . . , Qk of smooth quadrics in P(Vj/Vj−1). Since
the morphism Oµ → Flag(µ) is SLn-equivariant, if Qπ is T -fixed, F must also be T -fixed. Thus, each
Vj/Vj−1 is spanned by (the projection of) the standard basis vectors ei for the elements i ∈ [n] that occur
in the string πj . The action of T on the quadric Qj reduces to the action of the diagonal matrices in SLµj
on full rank µj × µj symmetric matrices.

It is a straightforward exercise to check that the only smooth quadric hypersurfaces in Pn that are T -fixed
are the quadric hypersurfaces x21 = 0 when n = 1 and x1x2 = 0 when n = 2. Therefore, if Oπ contains a
T -fixed complete quadric, then each µj ≤ 2 and if µj = 2, then Qj must correspond to the symmetric matrix
which interchanges the two variables, so if πj = i1i2, then we must have i1 > i2 in order for Q to belong to
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Oπ. Thus, π must be a barred permutation and Q must be the distinguished quadric Qπ. Moreover, if π is
a barred permutation, then Qπ is indeed T -fixed. �

In the rest of the section we determine the number of T -fixed points in X .

Lemma 3.4. The sequence bn satisfies the recurrence given by

bn+1 =

(
n+ 1

2

)
bn−1 + (n+ 1)bn for n ≥ 1,(6)

and the initial conditions b0 = b1 = 1.

Proof. Let π = [π1| · · · |πk−1|πk] be a barred permutation on [n + 1] and count possibilities for π according
to its last string πk. The first term in the recurrence counts the number of barred permutations where the
length of πk is 2 and the second term in the recurrence counts the number of barred permutations where the
length of πk is 1. �

The simple substitution ak := bk/k! converts the recurrence (6) into a linear recurrence,

ak = ak−1 +
1

2
ak−2 for k ≥ 2(7)

with initial conditions a0 = a1 = 1.
By standard techniques, the generating series for the sequence ak is

A(x) :=

∞∑
k=0

akx
k =

1

1− x− x2/2
.

Proposition 3.5. The exponential generating series F (x) =
∑
n≥0

bn
n! x

n for the number of barred permu-
tations of length n is given by

F (x) =
1

1− x− x2/2
=

∞∑
n=0

1√
3

(
(1 +

√
3)n+1 − (1−

√
3)n+1

2n+1

)
xn.

Therefore, the number of T -fixed points in Xn is

bn = n!an =
n!

2n

bn/2c∑
i=0

(
n+ 1

2i+ 1

)
3i.

4. T -stable curves and surfaces in the variety of complete quadrics

Let S ⊂ T ⊂ SLn be a singular codimension one subtorus of T , the kernel of a simple positive root α,
and let Y denote an irreducible component of XSn , the subvariety of S-fixed complete quadrics. Let Uα and
U−α denote the associated one-dimensional unipotent subgroups of SLn associated to α and −α, and let
Γα ∼= SL2 be the subgroup of SLn generated by Uα and U−α.

Let Pµ denote the standard parabolic subgroup associated with Oµ, that is the stabilizer of the standard
flag in the variety Flags(µ). Then Pµ has a Levi decomposition as LµnUµ, where Uµ is a maximal unipotent
subgroup of Pµ and Lµ is the Levi subgroup of Pµ. Note that a Levi subgroup of SLn has the form

S
(∏k

i=1GLµi

)
, for some composition µ of n. Here the factors GLµi are embedded block diagonally in SLn

and the S(·) notation refers to the subgroup of elements of determinant 1.

Proposition 4.1. Let µ be a composition and let idµ denote the identity µ-involution, namely, the string
12 . . . n partitioned according to µ. The stabilizer subgroup of Qidµ in SLn is equal to

S(S̃Oµ1
× · · · × S̃Oµk) n Uµ,(8)

where S̃Oµi is the normalizer of SOµi in GLµi , or equivalently the central extension of SOµi in GLµi .
8



Proof. The flag associated with Qidµ is the standard flag in Flags(µ), whose stabilizer is Pµ. Because the
individual quadrics in the complete quadric Qidµ lie on the successive quotient spaces in the standard flag,
the action on each the ith quadric is determined by the ith diagonal block, and since each individual quadric
corresponds to the identity symmetric matrix (standard bilinear form), its stabilizer is the central extension
of the orthogonal subgroup of the ith diagonal block. �

Proposition 4.2. Let α = αi,j , i < j, be the positive root of SLn such that α(diag(t1, . . . , tn)) = tit
−1
j .

Let β = [β1| · · · |βk] be a barred permutation, and Qβ the associated distinguished (and T -fixed) complete
quadric. Then the stabilizer of the action of Γα at Qβ is isomorphic to

(1) SO2, or equivalently the normalizer of the maximal torus of Γα, if i and j belong to the same length
2 string in β, or

(2) a Borel subgroup of Γα, if i and j belong to different strings in β

Proof. If i and j belong to the same string of β, then every element of Γα stabilizes the underlying flag of
Qβ and the action on the quadric xixj is the usual SL2 action on non-degenerate quadrics in two variables.
It follows that the stabilizer in this case is isomorphic to SO2. If i and j belong to different strings, then
a Borel subgroup of Γα fixes the underlying flag of Qβ , and then those elements also fix each quadric since
the variables xi and xj do not occur in the same quadric. �

Theorem 4.3. Let S be a codimension one subtorus of T . Any irreducible component of XSn is isomorphic
to a point, P1 or P2.

Proof. If S is a regular codimension-one subtorus, then as noted in Section 2.4, any irreducible component
of XSn is isomorphic to a point or P1.

Suppose that S is a singular codimension-one subtorus of T , the kernel of the simple root α : T → C∗
and let Y denote an irreducible component of XSn . By Proposition 4.2, the isotropy subgroup of a generic
point from the open SL2-orbit in Y is isomorphic to SO2 or a Borel subgroup B′ of SL2. In the former case
Y ∼= P2, while in the latter case, Y ∼= P1. �

When SL2 acts on P2 via its standard three-dimensional representation, which we identify with Sym2(C2),
2 × 2 symmetric matrices, there are two SL2-orbits; the open orbit corresponding to non-singular quadrics
and the closed orbit corresponding to degenerate quadrics. The latter orbit is isomorphic to P1, the flag
variety of SL2. Let T ′ ⊂ SL2 denote the maximal torus consisting of diagonal matrices and let B′ denote
the Borel subgroup of upper triangular matrices. The dense SL2-orbit has two B′-orbits: the orbit of the
quadric defined by x2 + y2 which does not have any T ′-fixed points, and the orbit of the quadric defined by
xy, which is a T ′-fixed quadric. The closed SL2-orbit has two T ′-fixed points.

Remark 4.4. It follows that if Y ⊂ Xn is isomorphic to P2 and invariant under the maximal torus T of
SLn, then the SL2-closed orbit in Y is stable under T .

Lemma 4.5. Let Y denote an irreducible component of XS , where S is a codimension-one subtorus of T .
Assume that Y contains at least two T -fixed points. If Y is contained in a G-orbit OI , then Y contains
exactly two T -fixed points.

Proof. Recall that each G-orbit Oµ has a G-equivariant fibration over a flag variety G/Pµ with fibers iso-

morphic to S(
∏k
i=1GLµk)/S(

∏k
i=1 S̃Oµk). Assuming that Oµ contains a T -fixed point, we have each µk = 1

or 2. Identifying SL2/SO2 with the space of all nonsingular quadrics in C2, we observe that there is exactly
one C∗-fixed point in SL2/SO2, hence there is at most one T -fixed point on each fiber of the fibration
πµ : Oµ → G/Pµ. Therefore, under πµ the set of T -fixed points in Y is mapped bijectively onto the set of
T -fixed point contained in Y ′ := πµ(Y ) ⊂ G/Pµ. Since Y ′ is S-fixed in G/Pµ, Y ′ either is a single point or
is isomorphic to P1. Since we assumed Y has at least two T -fixed points, Y ′ and hence Y has exactly two
T -fixed points. �

Corollary 4.6. Let Y denote an irreducible component of XS , where S is a codimension-one subtorus of
T . Assume that Y contains exactly three T -fixed points x, y, z ∈ Y ∩ X T . In this case, Y intersects two
G-orbits Oµ and Oν such that (without loss of generality)

(1) y ∈ Oµ and x, z ∈ Oν ;
9



(2) I(µ) ⊂ I(ν), hence Oν ⊂ X µ. Furthermore, dim Oµ = dim Oν + 1.

Proof. Since Y contains three T -fixed points, we know that Y is T -equivariantly isomorphic to P2. We know
also from Lemma 4.5 that Y intersects (at least) two G-orbits, which we denote by Oµ and Oν . Without
loss of generality we assume that Oµ is the SLn-orbit that contains y ∈ Y for which SL2 ·y is open in Y . By
Remark 4.4, the closed orbit in Y is T -equivariantly isomorphic to P1, hence it contains exactly two T -fixed
points. Since these two fixed points are in the same SL2-orbit, they are in the same SLn-orbit.

We know from the proof of Proposition 4.2 that there is a subgroup Γ ⊆ SLn isomorphic to SL2 that
acts on the complete quadric y in such a way that the flag is always fixed and the action on the sequence of
quadrics acts on a single quadric. If it is the ith quadric, then µi = 2. Let the barred permutation associated
to y be β = [β1| . . . |βi| . . . |βk], with βi = ba being a string of length two with a < b. Then limiting T -fixed
points x and z lie in Oν where

ν = (µ1, . . . , µi−1, 1, 1, µi+1, . . . , µk).

In fact the barred permutations associated to x and z are β′ = [β1| . . . |a|b| . . . |βk] and β′′ = [β1| . . . |b|a| . . . |βk].
The second assertion follows from this observation in the light of the isomorphism between the refinement
partial ordering on compositions and the inclusion ordering on SLn-orbit closures in Xn. �

Example 4.7. Consider the µ = (2, 1)-involution α = [21|3] having a T -fixed point. The SL2-orbit closure
in this case has three T -fixed points whose µ-involutions are β1 = α, β2 = [2|1|3], and β3 = [1|2|3].

Suppose we have two T -fixed points denoted by x and y contained in the B-orbits Oα ⊆ Oµ and Oβ ⊆ Oν ,
respectively. Assume for definiteness that X β ⊆ Xα. There are two cases:

(1) µ = ν. In this case, α is obtained from β by applying a transposition: there exists a pair of numbers
1 ≤ i < j ≤ n such that α is obtained from β by interchanging i and j. For example, α = [31|2] and
β = [21|3].

(2) µ 6= ν. In this case, one of the 2-strings of α is split into two 1-strings in β. For example, α = [21|3]
and β = [2|1|3], or α = [21|3] and β = [1|2|3].

Example 4.8. Figure 1 is the graph of all T -invariant surfaces and T -invariant curves in X3; the shaded
triangles represent T -stable P2’s, while the edges indicate T -stable P1’s. The graph is shown in Figure 2
embedded in the moment polytope associated to X3.

Now that we have a full characterization of T -fixed points, T -stable curves and T -stable surfaces in Xn,
we are ready to provide an explicit description of KT,∗(Xn) following [1]. Let X(T ) denote the character
group of T and R(T ) = Z[X(T )] denote the representation ring of T , which is generated as a Z-algebra by
the elements corresponding to a set of simple roots.

Theorem 4.9. The T equivariant K-theory KT,∗(Xn) is isomorphic to the ring consisting of tuples (fx) ∈∏
x∈Bn

R(T ) satisfying the following two congruence conditions:

(1) fx − fy = 0 mod (1− χ) when x, y are connected by a T stable curve with weight χ.
(2) fx − fy = fy − fz = 0 mod (1 − χ) and fx − fz = 0 mod (1 − χ2), when x, y, and z lie on a

T -stable surface that is fixed by a singular torus which is the kernel of a root χ, with x, y, and z as
in Corollary 4.6.

Moreover, the symmetric group Sn acts on the T -fixed points Bn by the natural action on barred permutations
and the G-equivariant K-theory KG,∗(Xn) is equal to the subring of Sn-invariants in KT,∗(X ).

5. Bruhat order for degenerate involutions

5.1. Bruhat order for Oµ. Fix a composition µ = (µ1, . . . , µk) of n. Recall that for any µ-involution π, the
B-orbit containing Qπ (resp. its closure) is denoted by Oπ (resp., X π). The Bruhat order on µ-involutions

is defined by π ≤ π′ ⇐⇒ X π ⊆ X π′ . We now apply a recursive characterization of the Bruhat order on
spherical varieties due to Richardson-Springer [17] and Timashev [20] in the special case of µ-involutions.

Proposition 5.1. Let π and ρ be µ-involutions. Then π ≤ ρ in Bruhat order if and only if

(1) π = ρ; or
10
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[2|31]

[2|1|3]

[21|3]

[1|2|3]

[1|32]

[1|3|2]

[31|2]

[3|1|2]

[3|21]

[3|2|1]

[32|1]

[2|3|1]

Figure 1. T -stable curves and surfaces in X3.
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Figure 2. The moment polytope associated to X3, a cubeoctahedron. Shaded triangles
correspond to T -invariant P2’s.
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(2) there exist µ-involutions π∗, ρ∗ and a simple transposition si such that ρ = si · ρ∗ with ρ 6= ρ∗,
π = π∗ or π = si · π∗, and π∗ ≤ ρ∗.

Remark 5.2. When µ = (1, 1, . . . , 1) (resp., µ = (n)), the Bruhat order on µ-involutions is equal to
the opposite of the Bruhat order on Sn (resp., the restriction of Bruhat order to the set of involutions in
Sn). Unfortunately, there is no such general property for arbitrary compositions. Each µ-involution can be
naturally identified with a permutation in Sn by ignoring the division into strings given by µ and considering
the string as the one-line notation of a permutation of [n] = {1, 2, . . . , n}. The Bruhat order on µ-involutions
is graded because Bruhat order for B-orbits in projective spherical variety is always graded [16], but Figure 3
shows that the induced Bruhat order on (3, 1)-involutions is not graded. (Consider the interval from [432|1]
to [321|4] in the bottom right portion of the figure.)

[432|1]

[243|1] [324|1] [431|2]

[143|2] [234|1] [314|2] [421|3]

[134|2] [142|3] [214|3] [321|4]

[124|3] [132|4] [213|4]

[123|4]

Figure 3. The induced Bruhat order on the (3, 1)-involutions is not graded, so does not
agree with the Bruhat order on (3, 1)-involutions.

We give pseudo-code for two algorithms; the first computes weak order covering relations among µ-
involutions, while the second compares two µ-involutions in Bruhat order. Algorithm 1 takes as input the
composition µ, a µ-involution, which is given by a sequence of alphabets A1, . . . , Ak with Ai ∩ Aj = ∅ if

i 6= j and
⋃k

i=1
Ai = [n] and permutations πi of the alphabet Ai for each i = 1, 2, . . . , k, and an integer

1 ≤ r ≤ n − 1 encoding a simple transposition sr. The algorithm outputs a µ-involution π′ 6= π with
sr · π′ = π if it exists; otherwise, it outputs π. (If A is an alphabet, then sr|A denotes the restriction of the
simple transposition sr to a bijection A→ sr(A).)
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Algorithm 1 Covering relations of weak order on µ-involutions

1: procedure Weak(µ, π, r) . Finds π′ l π with sr · π′ = π if it exists
2: input: a composition µ of n; a µ-involution π; an integer 1 ≤ r ≤ n− 1
3: output: π′ l π with sr · π′ = π if it exists; π if no such π′ exists
4:

5: if there exists i such that r, r + 1 ∈ Ai then
6: if πi(r) = r and πi(r + 1) = r + 1 then
7: π′i := srπi, π

′
j := πj for all j 6= i

8: else
9: if `(srπisr) = `(πi) + 2 then

10: π′i := srπisr, π
′
j := πj for all j 6= i.

11: else
12: π′ := π
13: end if
14: end if
15: else
16: define i, j by r ∈ Ai and r + 1 ∈ Aj
17: if i < j then
18: A′i := Ai ∪ {r + 1} \ {r}, A′j := Aj ∪ {r} \ {r + 1}
19: π′i := sr|Aiπisr|A′i , π

′
j := sr|Ajπjsr|A′j , π

′
l := πl for all l 6= i, j

20: else
21: π′ := π
22: end if
23: end if
24: return π′

25: end procedure

Recall that the length of a µ-involution is defined by (3). Bruhat order on µ-involutions is a ranked poset,
with

rank(π) := Lµ(min)− Lµ(π).

Algorithm 2 takes as input the composition µ and outputs the set Cov(µ) of all pairs (π, ρ) of µ-involutions
with π l ρ, i.e. π is covered by ρ in Bruhat order. It is based on the recursive characterization given in
Proposition 5.1. We refer to the set of all µ-involutions by Iµ.

5.2. Bruhat order for Xn. We now discuss comparing two arbitrary degenerate involutions in Bruhat
order, or equivalently determine if X π ⊆ X ρ for arbitrary degenerate involutions π and ρ. To do so, we make
use of the technology of W -sets from [6]. We first begin with some general remarks.

Let G be a complex reductive algebraic group with Borel subgroup B containing a maximal torus T .
Let ∆ be the set of simple roots of the associated root system. If α ∈ ∆, the minimal parabolic subgroup
B ∪ BsαB is denoted by Pα. If X is a G-variety, the set of all irreducible B-stable subvarieties in X is
denoted by B(X). Recall that X is said to be spherical if B has a dense orbit in X, or equivalently if there
are only finitely many B-orbits in X. In that case, B(X) consists of the closures of B-orbits in X.

Definition 5.3. A G-action on a spherical variety X is called cancellative if for any Y1, Y2 ∈ B(X), distinct
from each other, and for any simple root α ∈ ∆ such that PαY1 6= Y1 and PαY2 6= Y2 we have PαY1 6= PαY2.

Remark 5.4. The G-action on generalized flag varieties is cancellative, as is the G×G-action on G. However,
the diagonal action of G = SL2 on P1 × P1 is not [6].

Let P be a parabolic subgroup with Levi subgroup L ⊃ T , X ′ be an L-variety and let X denote the
quotient variety obtained from G×X ′ by the action of P , where P acts on G on by right multiplication and
it acts on the left on X ′ via its quotient group L. The variety X is a G-variety by left multiplication on the
first factor. We denote X by G ×P X ′ and identify X ′ with the P -invariant subvariety P ×P X ′, which is
exactly the fiber at P/P of the natural projection p : G×P X ′ → G/P . By Lemma 1.2 of [6], the G-action
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Algorithm 2 Generating the covering relations of Bruhat order in Oµ

1: procedure Cov(µ) . Produces set of covering relations in Bruhat order in Oµ
2: input: a composition µ of n
3: output: the set of cover relations for Bruhat order on µ-involutions
4: S := ∅;
5: for k = 1 to Lµ(min)− Lµ(max) do
6: for π ∈ Iµ do
7: if rank(α) = k then
8: for r = 1 to n− 1 do
9: π∗ := Weak(µ, π, r)

10: if π∗ 6= π then
11: S := S ∪ {π∗, π)}
12: end if
13: for ρ ∈ Iµ do
14: if rank(β) = k − 1 then
15: ρ∗ := Weak(µ, ρ, r)
16: if (ρ∗, π∗) ∈ S then
17: S := S ∪ {(ρ, π)}
18: end if
19: end if
20: end for
21: end for
22: end if
23: end for
24: end for
25: return(S)
26: end procedure

on the induced variety X is cancellative if and only if the L-action on X ′ is. Further, if G1, G2 are reductive
groups and X1 (resp., X2) is a cancellative spherical G1 (resp., G2) variety, then X1 ×X2 is a cancellative
spherical G1 ×G2-variety.

Proposition 5.5. For any composition µ, the action of SLn on Oµ is cancellative.

Proof. When µ = (n), the claim amounts to checking that the weak order on involutions is cancellative, which
is immediate from the definition of weak order on involutions. For any other composition µ = (µ1, . . . , µk) of

n, the variety X µ is induced from an L-variety X ′ where L = S(
∏k
i=1GLµi) and X ′ =

∏k
i=1 Xµi . Moreover,

Oµ is induced from the dense orbit of X ′, which is
∏k
i=1O(µi). Since the SLµi-action on O(µi) is cancellative,

it follows by the two remarks prior to this proposition that Oµ is cancellative. �

Cancellativeness is a useful property for studying Bruhat order. By Theorem 1.4 of [6], if Y = X π for a
degenerate involution π is the closure of a B-orbit in Xn and Z = X µ for a composition µ of n is the closure
of an SLn-orbit in Xn, then Y ∩ Z is the union of X ρ for µ-involutions ρ such that W (ρ) is contained in
(equivalently, has non-empty intersection with) W (π).

Theorem 5.6. Let π be a µ-involution and ρ be a ν-involution and assume ν � µ. Then ρ ≤ π if and only
if there exists a ν-involution γ with W (γ) ⊆W (π) (equivalently W (γ) ∩W (π) 6= ∅) and ρ ≤ γ.

Proof. Let X denote the G-orbit closure associated to µ and Y the G-orbit closure associated to ν. Let X ′

denote the B-orbit closure associated to π and Y ′ the B-orbit closure associated to ρ. By Brion’s theorem,
X ′ ∩ Y is equal to the union of all B-orbit closures Z ′ associated to ν-involutions γ with W (γ) ⊆ W (π)
(equivalently, W (γ) ∩ W (π) 6= ∅). (Note that a necessary condition for this inclusion to hold is that
codim(Z ′, Y ) = codim(X ′, X).) Thus, if Y ′ ⊆ X ′, then since Y ′ ⊂ Y and Y ′ is irreducible, we must have
Y ′ ⊆ Z ′ for some such Z ′. This proves the (⇒) direction.

The (⇐) direction is trivial, for if Y ′ ⊆ Z ′ for some Z ′ ⊆ X ′ ∩ Y , then clearly Y ′ ⊆ X ′, i.e ρ ≤ π. �
14



Algorithm 3 tests whether a µ-involution π is less than or equal to a ν-involution ρ in Bruhat order. It
uses a function Refine(ν, µ) which returns True if and only if ν is a refinement of µ. It also uses the function
Comp(ν, ρ, γ), with input a composition ν and two ν-involutions ρ and γ, which returns True if and only if
ρ ≤ γ in Bruhat order. Note that Comp(ν, ρ, γ) is True if and only if there exists a sequence π1, π2, . . . , πr−1
of ν-involutions with r = rank(γ) − rank(ρ) such that, setting π0 = ρ and πr = γ, (πi−1, πi) ∈ Cov(ν) for
i = 1, 2, . . . , r.

Algorithm 3 Comparing degenerate involutions in Bruhat order

1: procedure Test(µ, π, ν, ρ) . Determines if π ≤ ρ in Bruhat order
2: input: compositions µ, ν of n; a µ-involution π; a ν-involution ρ
3: output: True if π ≤ ρ in Bruhat order, False otherwise
4: if Refine(ν, µ) := False then
5: result: = False
6: else
7: for all ν-involutions γ with codim(γ) = codim(π) do
8: if W (γ) ⊆W (π) and Comp(ρ, γ) = True then
9: result:= True

10: end if
11: end for
12: end if
13: return result
14: end procedure

6. Cell decomposition and barred permutations

In this section, we construct a Bia lynicki-Birula cell decomposition of Xn and we construct two maps σ
and τ that describe the structure of the cells.

Let λ : C∗ → T a one-parameter subgroup. Explicitly

λ(z) =


za1 0 . . . 0
0 za2 . . . 0
...

...
. . .

...
0 0 . . . zan

 ,

where z ∈ C∗ and (a1, a2, . . . , an) ∈ Zn. We call a sequence (a1, a2, . . . , an) ∈ Zn of length n admissible if
the following restrictions are satisfied

(a) a1 < a2 < · · · < an;
(b) if i, j, k < l, then ai + aj < ak + al;
(c) if i, j < k, then 2ai < aj + ak.

Lemma 6.1. For any n > 0, the sequence (0, 1, 3, 7, . . . , 2n−1 − 1) is admissible.

Proof. Each of the three conditions for admissibility is easily checked by using binary representations of the
ai. �

A one-parameter subgroup corresponding to an admissible sequence is called an admissible one-parameter
subgroup, and we fix λ corresponding to the admissible sequence given in Lemma 6.1. We first investigate
the flow

lim
t→0

λ(t) ·Qπ
of a distinguished quadric Qπ associated to a µ-involution π under the action of λ.

Example 6.2. Let π = (68)|(25)(4)(9)|(13)(7). Then Qπ consists of the flag F : 0 = V0 ⊂ V1 ⊂ V2 ⊂ C9

whose successive quotients are spanned by e6, e8, by e2, e4, e5, e9 and by e1, e3, e7, as well the three quadric
hypersurfaces defined on these successive quotients by Q1 = x6x8, Q2 = x2x5 +x24 +x29 and Q3 = x1x3 +x27.
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Since the quadric Q1 = x6x8 is T -fixed, it is also λ-fixed. The quadric Q2 = x2x5 + x24 + x29 is not λ-fixed
and

λ(t) ·Q2 = t−(a2+a5)x2x5 + t−2a4x24 + t−2a9x29.

Since λ is admissible, 2a9 > a2 + a5 > 2a4 and it follows that lim
t→0

λ(t) · Q2 is the sequence of quadrics

x24, x2x5, x
2
9. A similar calculation for Q3 = x1x3 + x27 yields

lim
t→0

Qπ = Qπ′

where π′ = (68)|(4)|(25)|(9)|(13)|(7) corresponding to the barred permutation [86|4|52|9|31|7].

In general, we define a map

τ : {degenerate involutions} → {barred permutations}

as follows. Suppose π = [π1|π2| . . . |πk]. For each πj , order its cycles in lexicographic order on the largest
value in each cycle. Then add bars between each cycle. Since π is a µ-involution, every cycle that occurs
in each πj has length one or two. Finally, convert one-cycles (i) into the numeral i and two-cycles (ij) with
i < j into the string ji. For example, τ((68)|(25)(4)(9)|(13)(7)) = [86|4|52|9|31|7].

Proposition 6.3. For any µ-involution π, lim
t→0

λ(t) ·Qπ is the T -fixed quadric parameterized by τ(π).

Proof. The λ-weight of a monomial xixj is −(ai+aj). (This includes the case when i = j.) By the definition
of admissibility, the monomial xixj has a smaller λ-weight than xkxl if and only if max(i, j) < max(k, l).
This implies that the distinguished complete quadric Qπ flows under the λ action to the distinguished T -fixed
complete quadric associated to τ(π). �

Next, we define a map in the opposite direction

σ : {barred permutations} → {degenerate involutions}

which has the following geometric interpretation. Let Qα be the T -fixed quadric associated to a barred
permutation α. Then σ(α) corresponds to the distinguished quadric in the dense B-orbit of the cell that
contains Qα. In other words, the B-orbit of Qσ(α) has the largest dimension among all B-orbits that flow
to Qα.

Definition 6.4. Let α = [α1|α2| . . . |αk] be a barred permutation. Let dj denote the largest value oc-
curring in αj , giving rise to a sequence d = (d1, d2, . . . , dk). For example, if α = [86|9|52|4|7|31], then
d = (8, 9, 5, 4, 7, 3). We say that π has a descent (resp., ascent) at position i if d has a descent (resp., ascent)
at position i.

The µ-involution σ(α) is constructed by first converting strings i of length 1 into one-cycles (i) and strings
ji of length 2 into two-cycles (ij). Then remove the bars at positions of ascent and keep the bars at positions
of descent in α. For example, σ([86|4|52|9|31|7]) = (68)|(25)(4)(9)|(13)(7).

Proposition 6.5. For any barred permutation α, the B-orbit of Qσ(α) has the largest dimension among all
B-orbits that flow to Qα.

Proof. It follow immediately from Proposition 6.3 that lim
t→0

λ(t) · Qσ(α) = Qα. Let µ be the composition

associated to σ(α). If lim
t→0

λ(t) ·Qπ = Qα for a ν-involution π, then ν must be a refinement of µ. For at each

position of ascent in the sequence d, if a bar does not exist at that position in π, Proposition 6.3 implies
that the flow of Qπ would not be toward Qα. By [7], the dense B-orbit of the cell is the one that intersects
the largest dimensional G-orbit, so the dense B-orbit is indeed the one containing Qσ(α). �

Given a barred permutation α, let w(α) denote the permutation in one-line notation that is obtained by
removing all bars in α. Let inv(α) denote the number of length 2 strings that occur and let asc(α) denote
the number of ascents in α.

Lemma 6.6. The dimension of the cell containing the T -fixed quadric parameterized by α is `(w0) −
`(w(α)) + inv(α) + asc(α).
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Proof. Since w(α) belongs to the W-set of the B-orbit containing Qα, the codimension of the B-orbit
containing Qα in its G-orbit is `(w(α)) [10]. As the codimension of the closed G-orbit in the G-orbit
containing Qα is inv(α) and the dimension of the closed G-orbit is `(w0), it follows that the dimension of
the B-orbit containing Qα is `(w0) + inv(α)− `(w(α)). The result follow from the further observation that
the codimension of the B-orbit containing Qα in its cell is asc(α). �

In Figure 4, we depict the cell decomposition of X3, the variety of complete conics in P2. Each colored
rectangle represents a B-orbit parameterized by its corresponding µ-involution, and the edges stand for the
covering relations in Bruhat order. A cell is a union of all B-orbits of the same color.

[3|2|1]

[3|21] [32|1] [2|3|1] [3|1|2]

[2|31] [3|12] [23|1] [31|2] [1|3|2] [2|1|3]

[321] [1|32] [2|13] [13|2] [21|3] [1|2|3]

[132] [213] [1|23] [12|3]

[123]

Figure 4. Cell decomposition and the Bruhat order for X3.

Given a Bia lynicki-Birula cell decomposition, it is not always true that the closure of a cell is the union
of other cells. In other words, such a decomposition is not always a stratification. However, it is still a very
interesting question to study the partial order on cells (or on the indexing barred permutations) defined by

α ≤ β ⇐⇒ Cα ≤ Cβ ⇐⇒ Cα ⊆ Cβ ,
where α, β are barred permutations of length n, and Cα, Cβ denote the Bia lynicki-Birula cells with fixed
points Qα, Qβ . We illustrate the resulting cell decomposition when n = 3 in Figure 5. The dimension of a
cell corresponding to a vertex in the figure is equal to the length of any chain from the bottom cell. A vertex
corresponding to cell C is connected by an edge to a vertex of a cell C ′ of dimension one lower if and only
if C ′ ⊆ C.
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[3|2|1]

[3|21] [32|1]

[3|1|2] [31|2] [2|3|1]

[2|1|3] [2|31] [1|3|2]

[21|3] [1|32]

[1|2|3]

Figure 5. Cell closure inclusion poset for X3. The labels give the barred permutation
parametrizing the T -fixed point in the cell.

Remark 6.7. For n ≥ 3, the Bia lynicki-Birula decomposition of Xn is not a stratification. To see this, we
consider the Bruhat order on X3, depicted in Figure 4. The closure of the pink cell C[1|3|2] intersects the

orange cell C[3|1|2] in O[3|1|2], which is non-empty, but not equal to the entire orange cell which also includes

O[3|12].

It is desirable to have a combinatorial rule determining the (covering) relations of Bruhat order which does
not go through the costly inductive procedure given in Section 5. Given a composition µ of n, let us denote
by BCell(µ) the set of all µ-involutions such that Oµ is the dense B-orbit of its cell. Experimentally, we have
observed that the inclusion order restricted to BCell(µ) is a ranked poset with a minimal and a maximal
element. In Figure 6 we depict B(1, 3) as an embedded subposet in the closure order on (1, 3)-involutions.
We conclude by posing this observation as a conjecture.

Conjecture 6.8. Let BCell(X ) denote the set of all B-orbits in X that are dense in their Bia lynicki-Birula
cells. The restriction of Bruhat order to BCell(X) is a graded poset with a maximum and a minimum
element.
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