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Abstract

The method of regularized Stokeslets is a Lagrangian method for the computation of Stokes
flow driven by forces distributed at material points in a fluid. It is based on the superposition of
exact solutions of the Stokes equations when forces are given by a cutoff function. We present this
method in three dimensions, along with analysis of its accuracy and performance on the model
problems of flow past a sphere and the steady state rotation of rigid helical tubes. Numerically
predicted swimming speeds for various helical geometries are compared with experimenal data
for motile spirochetes. In addition, the regularized Stokeslet method is readily implemented
in conjunction with an immersed boundary representation of an elastic helix that incorporates
passive elastic properties as well as mechanisms of internal force generation.
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1 Introduction

The method of regularized Stokeslets [1] is a Lagrangian method for Stokes flow in which the tra-

jectories of fluid particles are tracked throughout the simulation. The method is particularly useful

when the particles are placed along a surface that deforms due to force-driven fluid motion. The

forces on the surfaces are given by regularized delta functions and the resulting velocity represents

the exact solution of Stokes equations for the given forces. Since the Stokes equations are linear,

one may use direct summation to compute the velocity at each of the immersed boundary points

in order to advance a time step. This method is related to boundary integral methods [2] when the

forces lie on the surface of a smooth connected set. However, the method of regularized Stokeslets

can also be used in cases when the forces are applied at a discrete collection of points that do not

approximate a smooth interface.

One application that motivates this work is the development of models of the fluid dynamics

of motile spirochetes [3], based upon an immersed boundary framework [4], that will ultimately

include increasing levels of detail of the morphology of the cells. Since viscous forces are much

larger than inertial forces in the realm of microorganism motility, one may use the Stokes equa-

tions to describe the fluid dynamics. The force-generating organism is accounted for by suitable

contributions to a force density term in the fluid dynamic equations. The force of an organism on

the fluid is a delta-function layer of force supported only by the region of fluid which coincides with

material points along the surface of the organism; away from these points this force is zero. The

methodology developed here will ultimately allow the coupling of the force-generating mechanisms

of a spirochete’s internal flagella with its passive elastic structures and the surrounding, viscous

fluid.
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The purpose of this paper is two-fold. Firstly, we present the regularized Stokeslet method in

three dimensions, along with analysis of its accuracy and its performance on two test problems.

Secondly, we present initial results on helical swimming in three dimensions. These swimmers have

finite thickness, and no restriction is placed upon the amplitude or wavelength of their helical shape.

We examine both the steady state swimming of a rotating rigid helix, as well as the dynamics of

an elastic helical body whose rotation is driven by simple, internal motors.

2 Stokes flow driven by regularized forces

In the next two sections we present the method of regularized Stokeslet which is based on exact

solutions of the Stokes equations for body forces that are represented by smooth localized elements.

In this case the incompressible Stokes equations are

µ∆u −∇p = −gφε(x − x0) (1a)

∇ · u = 0 (1b)

where φε(x) is known as a cutoff function with the property that
∫

φε(x)dx = 1. We think

of φε(x) as a radially symmetric smooth approximation to a delta distribution so that φε(x) is

concentrated near x = 0 and ε is a parameter that controls the spread of the function. Due to

the linearity of the equations, their solution for many forces of the same form can be obtained

by superposition. Regularization techniques that use this type of cutoff function have been used

extensively in other Lagrangian methods applied to problems in fluid dynamics [5, 6] and convection-

diffusion [7] processes.

One of the goals of this section is to develop a boundary integral representation of Stokes

flow with the use of regularized forces since the flow generated by these is given by an integral
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with nonsingular kernel. One advantage of this formulation is that it leads to stable numerical

computations since there is no need to evaluate nearly singular integrals of the type that arise in

the presence of a singular (but integrable) kernel. Another advantage is that the solutions are well

defined everywhere even when the forces are not applied on a closed surface but along curves or

even disconnected points. Those cases cannot be approached with the traditional boundary integral

formulation since they lead to singular nonintegrable kernels. On the other hand, since the cutoff

function approaches a delta distribution as ε → 0, the theory developed here also includes the

traditional formulation in that limit.

We introduce the regularized Green’s function for the velocity Sε(x,x0) and write the solution

of Eq. (1a)-(1b) in the form

ui(x) =
1

8πµ

3
∑

j=1

Sε
ij(x,x0)gj . (2)

This expression is also known as a regularized Stokeslet. Similarly, we write the pressure and stress

tensor associated with the flow as

p(x) =
1

8π

3
∑

j=1

P ε
j (x,x0)gj (3)

σik(x) =
1

8π

3
∑

j=1

T ε
ijk(x,x0)gj . (4)

We note that the Stokes equation, Eq. (1a), implies that the regularized velocity Green’s function

must satisfy

∆Sε
kj(x,x0) −

∂P ε
j (x,x0)

∂xk
= −8πδkjφε(x − x0) (5a)

for any j and k and where δkj is the Kronecker delta. Similarly, from the incompressibility condition
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(1b) we conclude that
3
∑

i=1

∂Sε
ij

∂xi
= 0 (5b)

for any j. The last two equations are equivalent to the Stokes equations in terms of the Green’s

functions.

If we consider all of space without boundaries, we take the derivative of Eq. (5a) with respect

to xk, sum over k and use Eq. (5b) we get the relation

∆P ε(x,x0) = 8π∇φε(x − x0).

It is convenient to define the functions Gε and Bε as the free-space solutions of the equations

∆Gε(x) = φε(x), ∆Bε(x) = Gε(x)

which depend only on the specific form of the cutoff function φε. These functions allow us to write

the pressure in general as

P ε
j (x,x0) = 8π

∂Gε(x − x0)

∂xj
(6)

and using Eq. (5a) we have that the regularized Green’s function for Stokes flow is

Sε
kj(x,x0) = 8π

[

∂2Bε(x − x0)

∂xk∂xj
− δkjG

ε(x − x0)

]

. (7)

It is important to note that this expression satisfies exactly the incompressibility condition in

Eq. (5b). Since the components of the stress tensor σ are defined as

σik(x) = −δikp(x) + µ

(

∂ui

∂xk
+

∂uk

∂xi

)

we find that

T ε
ijk(x,x0) = −δikP

ε(x,x0) + µ

(

∂Sε
ij(x,x0)

∂xk
+

∂Sε
kj(x,x0)

∂xi

)

. (8)
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For a given radially-symmetric cutoff function φε, the auxiliary functions Gε and Bε are derived

first and the solution is found from Eq. (6)-(8).

A A specific choice of cutoff φε

In our computations we use the cutoff function

φε(x − x0) =
15ε4

8π(r2 + ε2)7/2
(9)

where r = ‖x − x0‖. With this choice one can establish

P ε
j (x,x0) = (xj − x0,j)

2r2 + 5ε2

(r2 + ε2)5/2
(10a)

Sε
ij(x,x0) = δij

r2 + 2ε2

(r2 + ε2)3/2
+

(xi − x0,i)(xj − x0,j)

(r2 + ε2)3/2
(10b)

T ε
ijk(x,x0) =

−6(xi − x0,i)(xj − x0,j)(xk − x0,k)

(r2 + ε2)5/2

− 3ε2
(

(xi − x0,i)δjk + (xj − x0,j)δik + (xk − x0,k)δij

)

(r2 + ε2)5/2
. (10c)

These expressions are regularized versions of the well-known fundamental solution of the Stokes

equations. The regularization modifies the fundamental (singular) solution particularly in the near

field r < O(ε) while in the far field ε � r the modifications are negligible. In the limit as ε → 0,

since the cutoff function approaches a delta distribution, one expects the expressions above to

converge to the singular solution of the Stokes equations. This is, in fact, the case as one can verify

that for r 6= 0

lim
ε→0

P ε
j (x,x0) = P 0

j (x,x0) ≡ 2
(xj − x0,j)

r3

lim
ε→0

Sε
ij(x,x0) = S0

ij(x,x0) ≡
δij

r
+

(xi − x0,i)(xj − x0,j)

r3

lim
ε→0

T ε
ijk(x,x0) = T 0

ijk(x,x0) ≡
−6(xi − x0,i)(xj − x0,j)(xk − x0,k)

r5
,
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where S0
ij is known as a Stokeslet.

B The boundary integral equations

It is well known [8] that Stokes flow in smooth bounded sets may be represented in terms of boundary

integrals involving the boundary values of velocity and the surface force. This representation is

often derived from the Lorentz reciprocal identity relating two solutions of Stokes equations and

identifying one of them with the flow generated by a point force with strength g located at x0.

Here we present a modified version of the reciprocal identity where one solution is identified with

the flow due to a regularized force.

Let D be a solid body and assume that x is outside D. Let (u, p) satisfy

µ∆u −∇p = 0, ∇ · u = 0

and define the associated stress tensor by

σik = −pδik + µ

(

∂ui

∂xk
+

∂uk

∂xi

)

.

Let (uε, pε) be the solution of the Stokes equation with a regularized force of strength g centered

at x0

µ∆uε −∇pε = −gφε(x − x0), ∇ · uε = 0

and define the associated stress tensor by

σε
ik = −pεδik + µ

(

∂uε
i

∂xk
+

∂uε
k

∂xi

)

.

Since
∑3

k=1 ∂σik(x)/∂xk = 0 and
∑3

k=1 ∂σε
ik(x)/∂xk = −giφε(x−x0), it is not difficult to check
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that
3
∑

i,k=1

∂

∂xk
(uε

iσik − uiσ
ε
ik) =

3
∑

j=1

ujgjφε(x − x0).

We can now substitute the expressions

uε
i(x) =

1

8πµ

3
∑

j=1

Sε
ij(x,x0)gj and σε

ik(x) =
1

8π

3
∑

j=1

T ε
ijk(x,x0)gj

and use the fact that the coefficients gj are arbitrary to find that u and σ must satisfy the following

reciprocal relation for any j

1

8πµ

3
∑

i,k=1

∂

∂xk

(

Sε
ijσik − µuiT

ε
ijk

)

= ujφε(x − x0). (11)

This is our version of the Lorentz reciprocal identity.

We now let Ω be the set outside the body D and inside a large ball containing D (refer to

Figure 1), and we integrate the above expression over Ω to get

1

8πµ

3
∑

i,k=1

∫

Ω

∂

∂xk

(

Sε
ij(x,x0)σik(x) − µui(x)T ε

ijk(x,x0)
)

dV (x) =

∫

Ω
uj(x)φε(x − x0)dV (x)

which contains the nonsingular kernels Sε and T ε. Using the divergence theorem we write

1

8πµ

3
∑

i,k=1

∫

∂Ω

(

Sε
ij(x,x0)σik(x)nk − µui(x)T ε

ijk(x,x0)nk

)

ds(x) =

∫

Ω
uj(x)φε(x − x0)dV (x),

where n is the outward unit vector normal to the boundary ∂Ω. The boundary ∂Ω includes the

boundary ∂D of the solid body as well as the boundary of the ball containing D. Taking the limit

as the radius of this ball tends to infinity, one can check that the only contributions to the surface

integral above that remain are the ones from the surface of the solid body. Then one can write the

last equation in terms of the boundary traction fi =
∑3

k=1 σiknk as

1

8πµ

3
∑

i=1

∫

∂D
Sε

ij(x,x0)fids(x)− 1

8π

3
∑

i,k=1

∫

∂D
ui(x)T ε

ijk(x,x0)nkds(x) =

∫

Ω
uj(x)φε(x − x0)dV (x).

(12)
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For comparison, the usual derivation of the boundary integral formulation of Stokes flow is done

using a point force instead of the regularized force used here. The result in the singular case is the

formula

1

8πµ

3
∑

i=1

∫

∂D
S0

ij(x,x0)fids(x) − 1

8π

3
∑

i,k=1

∫

∂D
ui(x)T 0

ijk(x,x0)nkds(x) = uj(x0) (13)

which can also be obtained from Eq. (12) after taking the limit ε → 0 and passing the limit inside

the integrals.

Recall that the set Ω is the fluid volume outside D. Since D represents a solid body where

the velocity is constant, we can rewrite the second integral in Eq. (12) by applying the divergence

theorem in the region D (and using −n as the outward normal) to get after some simplification

1

8π

3
∑

i,k=1

∫

∂D
ui(x)T ε

ijk(x,x0)nkds(x) =

∫

D
uj(x)φε(x − x0)dV (x). (14)

After adding Eq. (12) and Eq. (14) and using the continuity of the velocity on ∂D, we arrive at

∫

R3

uj(x)φε(x − x0)dV (x) =
1

8πµ

∫

∂D

3
∑

i=1

Sε
ij(x,x0)fids(x). (15)

Eq. (15) is the formula that provides the basis for the method of regularized Stokeslets discussed

next.

We point out that since the Green’s function in Eq. (15) is regular, the formula is valid even if

the surface force is concentrated at a single point. Consider, for example, z ∈ ∂D and a force given

by fi(x) = f̃i δ2D(x − z), where δ2D is a two-dimensional Dirac delta. Then Eq. (15) implies that

∫

R3

uj(x)φε(x − x0)dV (x) =
1

8πµ

3
∑

i=1

Sε
ij(z,x0)f̃i,

which is also a regular expression.
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3 The Method of Regularized Stokeslets

In this section we describe the numerical method and provide an analysis of the errors. The method

is based on a simple discretization of Eq. (15). For N forces applied along the surface of the solid

body D, we approximate the fluid velocity at any point x0 with

uj(x0) =
1

8πµ

N
∑

n=1

3
∑

i=1

Sε
ij(xn,x0)fn,i An (16)

where fn,i is the ith component of the force applied at xn and An is the quadrature weight of the

nth particle. In the rest of this section we analyze the two types of errors associated with this

approximation: the regularization error on the left side of the equation and the discretization error

in the integral approximation.

A The regularization error

Comparing the left sides of Eq. (15) and Eq. (16), the error due to the regularization φε is introduced

in the approximation of the integral

∫

R3

uj(x)φε(x − x0)dV (x)

for the velocity u which is continuous across the boundary ∂D but whose gradient is typically

discontinuous there. The order of the approximation of this integral depends on how far the evalu-

ation point x0 is from ∂D. In this analysis we will use the specific cutoff in Eq. (9) although other

cutoff functions can be designed based on the analysis. We note that for this radially symmetric

cutoff we have

∫

R1<‖x‖<R2

φε(x)dx = 4π

∫ R2

R1

15ε4r2

8π(r2 + ε2)7/2
dr =

r3(2r2 + 5ε2)

2(r2 + ε2)5/2

∣

∣

∣

∣

R2

R1

.
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From this one can check that

∫

R1<‖x‖
φε(x)dx ≤ ε2 whenever Rc ≡

√

5ε/2 ≤ R1.

This inequality shows that although the cutoff φε has infinite support, most of its mass (1 − ε2) is

concentrated in a ball of radius Rc =
√

5ε/2. If the velocity components uj(x) satisfy |uj | < C

and since the cutoff function is positive, we have that

∫

R3

uj(x)φε(x − x0)dV (x) =

∫

‖x‖≤Rc

uj(x)φε(x − x0)dV (x) + O(ε2)

where Rc =
√

5ε/2.

For any multi-index k, we define the kth moment of the cutoff as

M|k|(φε) =

∫

R3

xkφε(x)dx.

Since φε(x) is radially symmetric and scales like φε(x) = 1
ε3 φ1(x/ε), we have that

M|k|(φε) = Ck

∫

R3

rk+2φε(r)dr = εk M|k|(φ1)

where Ck = 0 for |k| odd due to symmetry.

We assume first that the field point x0 is located in the fluid such that dist(x0, ∂D) > Rc and

that the velocity u(x) is smooth enough in a ball of radius Rc centered at x0 for the following

Taylor expansion to be valid

uj(x) = uj(x0) +
∑

k

(xk − x0,k)
∂uj(x0)

∂xk
+
∑

k,i

(xk − x0,k)(xi − x0,i)
∂2uj(x0)

∂xk∂xi
+ O(‖x − x0‖3).
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Then,

∫

‖x‖≤Rc

uj(x)φε(x − x0)dV (x)

= uj(x0)

∫

‖x‖≤Rc

φε(x − x0)dV (x) +
∑

k,i

∂2uj

∂xk∂xi

∫

‖x‖≤Rc

xkxiφε(x)dV (x) + O(ε2)

= uj(x0) + O(ε2),

where the first-order derivative terms do not appear due to the symmetry in M1(φε). The equation

indicates that the regularization error is O(ε2) when dist(x0, ∂D) > Rc.

When dist(x0, ∂D) < Rc, the field point x0 is too close to the boundary of D and the Taylor

expansion used above is not valid. Instead, one expansion is valid near x0 and outside of D and a

different expansion is valid near x0 and inside D. However, since uj is continuous but its gradient

is typically discontinuous across ∂D, the symmetry in M1(φε) which eliminated the O(ε) error is

no longer available and the regularization error is only O(ε) when 0 ≤ dist(x0, ∂D) < Rc.

B The discretization error

We point out that if we approximate the left side of Eq. (15) with uj(x0), the equation reduces to

a Fredholm equation of the first kind for the traction f when the surface velocity is given. The

kernel on the right side of Eq. (15) is nonsingular but its derivatives can be large and they enter

into the estimate of the error in the quadrature Eq. (16).

Let a point x ∈ ∂D be described in Lagrangian form by x = X(s, t) where s = (s1, s2) is a

material point on the surface. We assume that the surface ∂D can be covered by patches Pn for

n = 1, . . . , N and that there is a smooth function that maps each patch to a rectangle such that the

Jacobian of this map has no singular points. In this case, the integral on the right side of Eq. (15)
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can be written as

1

8πµ

∫

∂D

3
∑

i=1

Sε
ij(x,x0)fids(x) =

1

8πµ

N
∑

n=1

∫

Pn

3
∑

i=1

Sε
ij(s, s0)fi(s)J(s)ds,

where J(s) =
∣

∣

∣

∂X(s)
∂s

∣

∣

∣ is the Jacobian of the transformation and s0 is the material point that

corresponds to the evaluation point x0. The last integral can be approximated by any quadrature

rule using points indexed by q within each patch, so that

1

8πµ

∫

∂D

3
∑

i=1

Sε
ij(x,x0)fids(x) ≈ 1

8πµ

N
∑

n=1

3
∑

i=1

∑

q

Sε
ij(sq, s0)fi(sq)J(sq)(∆s1∆s2w)q,

where (∆s1∆s2w)q represents the weight associated with point q in patch n. In the computations

presented here we use the trapezoidal rule which requires estimates of the second derivatives of

the integrand in order to find an error bound. For the two-dimensional trapezoidal rule, an error

estimate is given by

∫∫

Pn

F (s1, s2)ds1ds2 −
1

4
∆s1∆s2

2
∑

m,k=1

F (sm
1 , sk

2) ≈ ∆s3
1∆s2(∂

2F/∂s2
1) + ∆s1∆s3

2(∂
2F/∂s2

2), (17)

where

F (s1, s2) = Sε
ij(s1, s2, s0)fi(s1, s2)J(s1, s2).

From the regularized Stokeslet formula, Eq. (10b), one can deduce that if ξ = εx,

Sε
ij(x,x0) =

1

ε
Sε

ij(ξ, ξ0)

and therefore

∂Sε
ij(x,x0)

∂xk
=

1

ε2

∂Sε
ij(ξ, ξ0)

∂ξk
and

∂2Sε
ij(x,x0)

∂xk∂xm
=

1

ε3

∂2Sε
ij(ξ, ξ0)

∂ξk∂ξm
.
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Since the functions Sε
ij(ξ, ξ0),

∂Sε
ij(ξ,ξ0)

∂ξk
and

∂Sε
ij(ξ,ξ0)

∂ξk∂ξm
are bounded and assuming fi(s1, s2) and

J(s1, s2) have bounded derivatives up to order two, the trapezoid rule error in Eq. (17) is

Err = O

(

∆s3
1∆s2

(

C1

ε
+

C2

ε2
+

C3

ε3

))

+ O

(

∆s1∆s3
2

(

C1

ε
+

C2

ε2
+

C3

ε3

))

.

We mention that better estimates of quadrature formulas for weakly singular integrals have been

derived elsewhere (see for example [9]). In summary, the method of regularized Stokeslets in Eq. (16)

approximates Eq. (15) with accuracy

O

(

∆s3
1∆s2

ε3

)

+ O

(

∆s1∆s3
2

ε3

)

+ O(εq) (18)

with q = 1 at evaluation points x0 on or near the boundary ∂D and with q = 2 at points sufficiently

far from ∂D.

4 Example 1: Translating sphere

Consider the fluid motion produced by a solid sphere of radius a translating with velocity U =

(0, 0, 1)T in a Stokes flow of viscosity µ. The exact solution for the velocity field u = (u1, u2, u3)
T

at a point x = (x1, x2, x3)
T outside the sphere is (see for instance [10]):

u1(x1, x2, x3) =
3a

4

(

1

r3
− a2

r5

)

x1x3

u2(x1, x2, x3) =
3a

4

(

1

r3
− a2

r5

)

x2x3 (19)

u3(x1, x2, x3) =
3a

4

(

1

r3
− a2

r5

)

x2
3 +

a

4r

(

3 +
a2

r2

)

.
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Here r is the distance from the point x to the center of the sphere. Note that inside the solid

sphere, the velocity is U = (0, 0, 1)T . The hydrodynamic traction on the sphere is:

f(x) =
3µ

2a
U. (20)

In order to apply the method of regularized Stokeslets to this test problem, we discretize the

surface of the unit sphere using a six-patch structured grid. It is constructed by placing the sphere

inside a cube with an N × N uniform grid on each face. The computational grid results from the

intersection of sphere’s surface with lines joining the center of the sphere and the nodes on the

cube [8]. In this way, the approximate grid size on the sphere is ∆s = 2πa/4N . At each of the

points on the surface, we apply the force in Eq. (20). Using Eq. (16), we can compute the resulting

velocity at the points on the surface, and compare it to the exact solution (0, 0, 1)T .

We examine the errors in the third component of surface velocity. Figure 2 shows the dependence

of the L2-norm of the error on the regularization parameter ε for a fixed six-patch grid, 24 × 24

points on each patch. This gives a discretization size of about ∆s = 0.065. Note that for large

values of ε the error grows linearly and as ε is reduced, the error initially decreases but is ultimately

overtaken by the increasing quadrature error, as suggested by the error bound in Eq. (18).

Figure 3 shows the L2-norm of the error for a fixed ε as the grid is refined, from a six patch

12×12 grid down to a six patch 192×192 grid. Note that for the three finest grids, the regularization

error dominates, and the finer discretization is not advantageous.

Figure 4 shows the error in the computed velocity as a function of the regularization parameter

ε at both a point on the surface of the sphere (top graph) and a point in the exterior of the sphere

far from the surface (bottom graph). Note that on the surface of the sphere this error increases
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linearly for large values of ε. The point corresponding to ε = 0 was computed by avoiding placing a

force vector at the evaluation point. The bottom graph shows the velocity error at a point farther

from the sphere where the computation is more accurate. These errors are smaller in magnitude

and depend quadratically on ε as the analysis in the previous sections indicates. For small values

of ε, the discretization errors dominate and are nonzero since the grid is fixed.

A Computation of resistance matrices for a sphere

In this section, we discuss the computation of resistance matrices that describe the linear relation-

ship between the total hydrodynamic force and torque and the translational and angular velocities

of a rigid body moving in a Stokes flow. We compare the resistance matrices generated by the

method of regularized Stokeslets for a moving sphere to those known from classical theory.

The total hydrodynamic force exerted by the solid whose boundary supports the force distri-

bution f is:

F =

∫

∂D
f(x) ds(x) (21)

and the total hydrodynamic torque is given by:

L =

∫

∂D
x × f(x) ds(x). (22)

In the case of a rigid body, we decompose the force into a drag force due to translational motion

of the body, and a force due to rotation of the body. The linearity of the Stokes equations allows

us to represent these forces in terms of resistance matrices acting on the velocity U and angular
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velocity Ω vectors of the rigid motion [2]:

F = T U + P Ω (23)

L = PT U + R Ω. (24)

Here T , P, nd R are 3 × 3 resistance matrices that depend only upon the geometry of the solid

body.

In the case of a sphere, it is apparent due to symmetry that the translation and rotation

resistance matrices T and R are constant multiples of the identity, and that P = 0. In fact, one

can easily compute the total hydrodynamic force F induced by a translating sphere with constant

velocity U by integrating the traction in Eq. (20) over the surface of the sphere to get the classical

result F = 6πµaU. In the case of a sphere rotating about its center with angular velocity Ω, the

total hydrodynamic torque is L = 8πµa3Ω. Therefore, the resistance matrices for a sphere of radius

a are T = 6πµaI and R = 8πµa3I.

The method of regularized Stokeslets has been presented as a way to compute the velocity field

in Stokes flow resulting from a given distribution of forces localized at a set of points. Consider the

discretization of the surface of an object by the points x1,x2, . . . ,xN . The forces applied at these

points are denoted by f1,f2, . . . ,fN . The linear relationship between the velocities and the forces

at these points may be calculated from (16):

um,j =
1

8πµ

N
∑

n=1

3
∑

i=1

Sε
ij(xn,xm)fn,i An. (25)

Here fn = (fn,1, fn,2, fn,3)
T , j = 1, 2, 3 and m = 1, . . . , N . We may write this relationship in matrix

vector form:

u =
1

8πµ
Af , (26)
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where the vectors of length 3N are u = (u1,u2, . . . ,uN )T and f = (f1,f2, . . . ,fN )T , and A is

a 3N × 3N matrix whose entries depend upon the coordinates x1,x2, ...,xN , the regularization

parameter ε and the surface discretization.

Conversely, one may also use the linear relationship in Eq. (26) to compute the surface force

that generates a specified velocity of the solid body. The matrix A is a discretization of the single-

layer potential on the right side of Eq. (15) which is known not to be invertible in general. For

example, consider a normal force of constant magnitude applied to the surface of a sphere. This

pressure-like force will not cause any fluid motion due to the incompressibility in Eq. (5b) regardless

of the magnitude of the forces. In algebraic terms, the matrix A has a nontrivial null-space and

therefore, a unique solution of Eq. (26) is not guaranteed. For the computation of the total force

F in Eq. (23) on the surface of the sphere, this is not a problem since the symmetry of the sphere

implies that forces of the form f(x) = cn(x) will have no contribution to the value of F. In our

computation of the surface force f , we found that using the iterative procedure GMRES with zero

initial guess works well.

In order to illustrate how to use the method of regularized Stokeslets to assemble the resistance

matrices T ,P and R, consider applying a constant velocity of uj = (1, 0, 0)T to each point xj , j =

1, 2, ..., N on the surface of the solid. We then use Eq. (26) to solve for f . These forces are

integrated over the boundary to arrive at the total hydrodynamic force vector F. However, in this

case U = (1, 0, 0)T , and Ω = 0. Using Eq. (23), the entries of the first column of the translation

resistance matrix T must be equal to the total hydrodynamic force F. Similarly, the first column of

the resistance matrix PT must be equal to the total hydrodynamic torque computed by integrating

xj × f j, j = 1, 2, . . . , N over the boundary (see Eq. (24)). The remaining columns of T and PT
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are computed by applying translational velocities in the other two coordinate directions, and using

Eq. (26) to solve for the forces. A systematic application of rigid rotations about each of the three

coordinate axes enables us to assemble the rotational resistance matrix R.

We calculate the resistance matrices for a sphere of radius a = 1, in a fluid with viscosity µ = 1,

where our discretization used a six-patch grid, 48 × 48 points on each face, and a regularization

parameter ε = 0.01. For these values, the analytical solution for these matrices is T = 6πI ≈

18.85 I, R = 8πI ≈ 25.133 I, and P = 0. The computed values of the matrices are

T =





18.80 1.3 × 10−9 −6.7 × 10−10

−9.8 × 10−10 18.80 −2.5 × 10−11

−7.1 × 10−10 1.5 × 10−10 18.80





PT =





−3.3 × 10−10 −1.6 × 10−9 −2.3 × 10−9

−1.4 × 10−10 1.5 × 10−11 1.2 × 10−10

5.3 × 10−10 3.9 × 10−10 1.9 × 10−11





P =





−1.6 × 10−9 1.2 × 10−9 1.8 × 10−10

4.0 × 10−9 −1.0 × 10−9 −2.2 × 10−8

−5.1 × 10−9 1.2 × 10−8 −7.0 × 10−9





R =





25.09 4.1 × 10−11 1.2 × 10−10

4.0 × 10−10 25.09 −2.2 × 10−9

−1.0 × 10−10 −3.8 × 10−10 25.09



 .

Since the method of regularized Stokeslets has been applied to points on the surface of the sphere,

we expect the error in the computation to be O(ε) in addition to errors in the iterative solver and

the computation of the global quantities. The off-diagonal entries of the matrices show very little

error while the nonzero diagonal entries show an error of about 5ε.

Table 1 presents the convergence of the diagonal values of T as the regularization and discretiza-

tion parameters are refined. By looking at the last column, corresponding to the finest grid, one
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can appreciate the linear convergence in ε. On the other hand, by looking at the row corresponding

to ε = 0.01, one can see the convergence as the discretization size is reduced. Table 2 presents

similar convergence results for R.

5 Motion of a helical body

In this section we consider a second test problem which consists of a helical tube of nonzero thickness

as it moves through a fluid propelled by an imposed force along its axis. This problem is relevant

since there is sufficient theoretical and experimental literature that can be used to evaluate our

numerical method. In addition, this problem is helpful for understanding the flow surrounding

helical flagella or organisms such as spirochetes.

The computational organism is constructed based on a helical centerline (xc, yc, zc) given by

xc(s) = R cos(2πzc/λ), yc(s) = R sin(2πzc/λ), 0 ≤ zc ≤ L

where R is the radius of the helix and λ is the pitch. We consider only helices where L is an

integer multiple of λ. We assume that each cross-section is circular with radius a, representing the

thickness of the tube. This organism is discretized with M cross-sections along its body with N

points each.

We first perform a comparison with experimental results reported by Purcell [11], who consid-

ered the case of vanishing thickness, a → 0. In those experiments, the force, linear velocity and

angular velocity are assumed to point in the direction of the helix axis, which is equivalent to reduc-

ing Eq. (23)-(24) to scalar equations relating the vector magnitudes linearly with proportionality

constants T33, P33 and R33 (since the axes of our helices are aligned with the z-axis). In [11], a
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helical wire was dropped under its own weight into silicon oil. The experiments measured the wire’s

sinking speed and rate of rotation, and then used those values to estimate the resistance coefficients

from mathematical formulas. The specified helix parameters were L, the ratio L/λ and the pitch

angle φ defined by

tan φ =
2πR

λ
.

The helix radius R was allowed to vary in order to design the helices that fit the other parameters.

Purcell reports the results shown in Table 3.

For the numerical comparison, we designed helical tubes with parameters similar to those spec-

ified in [11]. Since there is no information about the thickness of the wires, we chose in our compu-

tations helical tubes of radius a = 0.025 cm. The regularization parameter was set to ε = 0.01 and

we computed the corresponding resistance coefficients as described previously for a grid consisting

of 400 cross-sections and 6 points per cross-section. The results are presented in Table 4.

The resistance coefficients in Table 4 compare very well with the experimental values in Table 3

for all of the parameter combinations. To assess the effect of the tube’s discretization, we chose the

parameters associated with the first row of Table 4 and we computed the corresponding resistance

coefficients for two grids of different levels of refinement while keeping ε = 0.01. The results in

Table 5 show additional improvement in the agreement with finer discretizations.

A Spirochete motility

Spirochetes are an order of bacteria characterized by a unique cellular anatomy and mode of motility

[12, 3], and include the causative agents of syphilis and Lyme disease. The locomotory ability of

these pathogenic spirochetes enables them to screw through viscous fluids and mucosal surfaces.

21



The method of locomotion of these bacteria that lack external flagella has been puzzling. Their

helical shape is imparted to them by a rigid protoplasmic cylinder. This cylinder is surrounded

by a membrane referred to as the outer sheath. The region between the outer sheath and the

cytoplasmic membrane is termed the periplasmic space. Within this region are a number of internal

or periplasmic flagella that attach at either tip of the protoplasmic cylinder. There is evidence that

these periplasmic flagella rotate in a manner similar to other bacteria [13]. The rotation of these

periplasmic flagella cause the spirochete to swim.

Berg [14] proposed a model for spirochete motion in which he showed that an external flagellum

was not needed to produce the torque required to propel the helical cell. He assumed that the

protoplasmic cylinder is semi-rigid, that the periplasmic flagella rotate in the same manner as

external flagella of other bacteria, and that the outer sheath is flexible and free to rotate about the

protoplasmic cylinder. However, there is evidence, at least in Leptospira, that the outer sheath is

quite fluid [15], suggesting that it might not rotate as a single sheet. Ignoring the internal structure

of the cells, Lighthill [16, 17] used a slender body approximation to analyze the fluid velocity

field in the vicinity of swimming spirochetes using helical distributions of Stokeslets and dipoles.

As discussed above, Purcell [11] later examined the relationship between forces and torques and

velocities of rotating helical objects in a viscous fluid.

1 Steady State Rigid Helix

In order to gain insight into spirochete motility, we turn to the steady state rotational motion

of a finite length, finite body width, helix. We have demonstrated that we can use the method

of regularized Stokeslets to calculate resistance matrices for solid objects that describe the linear

relationship between drag and rotational velocities and total force. No restrictive assumptions
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about these solid objects need to be made, such as slender bodies or small amplitude waveforms.

For a given helical geometry and width of the body, we would like to compute the ratio between

angular speed (|ω|) of the turning helix and the forward swimming speed (|v|). This is done as

follows. Once we have calculated the resistance coefficients in the manner of the previous section, we

set the total force F in Eq. (23) to zero as a requirement for steady state motion (no acceleration).

We assume that the linear velocity and angular velocity are in the direction of the helix axis which

is aligned with the z-axis. Therefore, the ratio |ω/v| = |P33/T33|.

We performed a set of experiments on helical geometries, some of which are shown in Figure 5.

Using experimental data for Leptonema illini [12, 13], we chose a body length of 11.93 µm, and

a body radius of 0.0735 µm, and a helix radius of 0.088 µm. As shown in Figure 5, we varied

the number of pitches per body length, keeping the other helix and geometrical parameters fixed.

Once we computed the ratio of angular velocity to translational velocity we determined the number

of rotations required for the organism to swim one body length. Figure 6 shows the number of

rotations as a function of the number of pitches per body length. If one considers this a measure

of swimming efficiency, we see that either too few pitches or too many are less efficient than the

mid-range values of 10 − 18 pitches per body length. In fact, the average pitch of L. illini, is

0.702 µm, which would be 17 pitches per body length, which falls in this range. Figure 7 shows a

high-voltage transmission photograph of a Leptonema illini. Our calculations indicate that such an

organism would require roughly 128 rotations to swim one body length. In recent experiments of

motile L. illini in buffer solution, free of polymers, Goldstein [18] reports that for a body length of

12µm, the number of turns the body makes in order to swim one body length is about 140. These

data were taken on a sample of eight cells, and the standard deviation from the average of 140
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turns is 13. This range is shown as an error bar in Figure 6.

2 Elastic Helix

In this section we briefly describe the modeling of a non-rigid, dynamically rotating helix in a

viscous fluid using the regularized Stokeslet method. As a first step in capturing the fluid-structure

interactions between a spirochete and the surrounding fluid, we have developed an elastic model of

a helix with rotation driven by internal motors.

We choose an immersed boundary representation, where the outer sheath of the spirochete is

modeled by a discrete collection of points that are interconnected by springs (see, for instance

[19, 20, 21]). Circles of points are placed regularly about a centerline along the length of the helix,

in planes normal to the centerline. A series of springs around the circular cross-sections can be

thought of as forming circular filaments or fibers. Similarly, other series of springs connecting the

discrete points form longitudinal and right- and left-handed helical filaments. In order to model

the helical shape, the resting lengths of these springs will be held at their lengths at the start of

the simulation. We may vary the elastic properties of the outer sheath by varying the stiffness

constants of the springs that form each family of filaments.

In order to generate rotation of the helix while conserving momentum and angular momentum,

we add internal motor springs that connect rings on the outer sheath to inner structural rings at

segments on either end of the helix. The rotation will be driven by the contraction of these dynamic

springs (see Figure 8). As the springs between the rings contract, these rings will counter-rotate,

causing the entire structure to rotate. When the tension of a spring falls below a given tolerance,

the spring is reformed with an attachment point further away on the outer sheath ring. We think
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of the space between the rings as the periplasmic space between the cell body and outer sheath in

a true spirochete. In this model, we do not explicitly represent the internal periplasmic flagella,

but their action is modeled by the distribution of the motor springs. The rotation speed of the

entire structure is not preset, but is determined by the stiffness constants of the motor springs and

structural springs, along with the tension tolerance imposed. These dynamics springs are analogous

to those used to model the molecular motor dynein acting upon microtubules in eukaryotic cilia

[19].

Our immersed boundary helical structure is coupled to the surrounding, viscous incompressible

fluid in the following manner. At the beginning of a time step, the state of the system is determined

by the configuration of the discrete set of material points that make up the outer sheath and the

inner rings of the model spirochete. The restoring forces due to each of the structural springs and

motor springs contribute to resultant forces fn at each material point xn. These forces are used to

determine the velocity at each discrete point using the summation in Eq. (16). These velocities are

used to update the positions of the material points using a high-order integration scheme [22].

Note that although the Stokes equations are steady, time-dependence appears in this model due

to evolution of the spring forces as the configuration of the material points change. The geometry

of the model spirochete can vary as it responds to the motion of the viscous fluid. Likewise, the

motion of the fluid is determined by the action of the structural elastic forces and the motor forces

applied at the either end of the model organism.

We illustrate the capability of this model in Figure 9, which shows a sequence of snapshots of

a model spirochete at equally spaced time intervals. The left-most frame in Figure 9 shows the

regular geometry of this helical structure at the start of the simulation, when all the structural
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springs that build the spirochete are at their rest lengths. Here the body length is 6 times the

pitch (see Figure 9). The discretization of the surface includes 100 rings and 8 points per ring.

Five internal motor rings are placed within each end of the helix, and motor springs under tension

are activated at the start of the simulation. The dynamic action of these motor springs that

attach, break, and reattach to points on the outer rings generate a steady rotation of the structure.

Figure 9 show that these rotations result in steady progress in the swimming direction. In fact,

the swimming speed measured in these dynamic calculations is very close to the swimming speed

measured for a rigid helix with the same geometry using the steady state model described earlier.

Although large stiffness constants have been used for the structural springs, one can note the

slight change in the shape of the helix from the initial frame to the last. In particular, note that

the pitch-length is no longer constant in the last frame. The helix is elongated at the bottom, and

somewhat compressed at the top as it experiences resistance from the viscous fluid. We may also

evaluate the flow field at any point in space using Eq. (16). Figure 10 shows a snapshot of the

velocity field along a transverse plane to the helical structure at a fixed time step.

6 Conclusion

We have presented the method of regularized Stokeslets for the numerical computation of Stokes

flows in three dimensions driven by body forces applied along moving boundaries. The method had

been presented previously [1] for two-dimensional problems although the accuracy of the method

had been demonstrated only numerically. The method of regularized Stokeslets is based on the

superposition of exact solutions of the Stokes equations when forces are given by a cutoff function.

In cases when the forces are distributed over a surface, the method is interpreted as a discretization
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of a boundary integral, similar to a boundary element method. However, the points where the forces

are applied need not discretize a smooth surface; they may represent a curve in three dimensions

or a collection of randomly distributed points.

Our analysis of the accuracy of the method of regularized Stokeslets shows that when the forces

are on surfaces, part of the error is due to the regularization and depends only on the cutoff

parameter ε. Another part of the error is due to the discretization of the surface integral and

depends on ε as well as the discretization parameters. The regularization error is shown to be O(ε)

in a region of size O(
√

ε) surrounding the moving boundaries but the error improves to O(ε2) away

from the boundaries. For a fixed discretization, the discretization error is inversely proportional to

a power of ε, making it possible to find an optimal value of the regularization parameter.

The results of the analysis were validated using two test problems. The well-known flow around

a sphere was used to evaluate the performance of the method and the errors at positions near

and far from the boundary of the sphere. The calculations agree with the analysis. The formula

that relates the velocity of the particles to the force applied at them can be used to compute the

force required to generate a given velocity; that is, it can be used to impose a velocity boundary

condition. Assuming a linear dependence of the force and torque on velocity, resistance matrices

for the sphere were computed and compared with known analytical values. The results show that

as the numerical parameters are refined, the computed values are within the error estimates of the

exact values.

A second test problem was that of the solid-body motion of a helical tube. The computed

resistance coefficients were compared with the experimental data obtained by Purcell [11] for helical

tubes of various lengths, pitches, and pitch angles. Although the thickness of the wires used in the
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experiments was not known, most of the coefficients computed were within 10% of the reported

values.

In addition, using the geometrical data obtained for Leptonema illini along with our method for

computing resistance matrices, we numerically estimated the ratio of angular speed to swimming

(linear) speed of these spirochetes. The ratio was computed for helices of fixed body length (viewed

from the side), fixed helical diameter and fixed body radius, but with the number of pitches per

body length varied. Our calculations show that this ratio is minimum (indicating higher swimming

efficiency), for pitch lengths in the range 0.6628–1.193 µm. This range includes the L. illini average

pitch length of 0.702 µm [12].

Finally, we have presented a dynamic computation of the motion of an elastic helical tube driven

by internal motors. This example illustrates how the coupling of the passive elastic properties of

the body, active internal force generation and fluid motion may be achieved. We will use this

methodology in future work to build models that encompass increasing levels of detail of the

internal structure and physiology of spirochetes.
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ε grid size

6 × 12 × 12 6 × 24 × 24 6 × 36 × 36 6 × 48 × 48

0.1 19.36 19.38 19.39 19.39

0.05 18.88 19.09 19.10 19.10

0.01 16.47 18.33 18.69 18.80

Exact 18.85 18.85 18.85 18.85

Table 1: Computed diagonal entries of the resistance matrix T for different regularization and
discretization parameters.
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ε grid size

6 × 12 × 12 6 × 24 × 24 6 × 36 × 36 6 × 48 × 48

0.1 27.09 27.16 27.16 27.16

0.05 25.53 26.08 26.10 26.11

0.01 19.62 23.89 24.80 25.09

Exact 25.133 25.133 25.133 25.133

Table 2: Computed diagonal entries of the resistance matrix R for different regularization and
discretization parameters.
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L (cm) L/λ φ (degrees) T33 P33 R33

5.2 5 55 0.67 0.032 0.076

7.8 5 39 0.71 0.038 0.060

9.4 5 20 0.74 0.018 0.031

3.1 3 55 0.48 0.023 0.053

7.5 7 56 0.91 0.053 0.130

Table 3: Experimental measurement of resistance coefficients as reported in [11]. All coefficients
were normalized by 6πµ.
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L (cm) L/λ φ (degrees) T33 P33 R33

5.2 5 55 0.6102 0.0303 0.0816

7.8 5 39 0.6823 0.0354 0.0736

9.4 5 20 0.6605 0.0141 0.0274

3.1 3 55 0.4356 0.0221 0.0496

7.5 7 56 0..7938 0.0391 0.1294

Table 4: Numerical computation of the resistance coefficients for ε = 0.01 and a grid of 400 cross-
sections and 6 points per cross-section. All coefficients were normalized by 6πµ.
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grid T33 P33 R33

6×400 0.6102 0.0303 0.0816

12×800 0.6220 0.0316 0.0850

Table 5: Numerical computations of resistance coefficients for L = 5.2, L/λ = 5, pitch angle 55◦

and two grids with different levels of refinement. All coefficients were normalized by 6πµ.
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Figure 2: L2-norm of the error in the third component of velocity on the sphere as a function of
the regularization parameter ε. The surface of the sphere was discretized using a six-patch, 24× 24
fixed grid.
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Figure 3: L2-norm of the error in the third component of velocity on the sphere as a function of
grid size, for a fixed regularization parameter ε = 0.01.

41



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Regularization parameter,  ε

Error in the velocity at the point (1,0,0)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

1

2

3

4
x 10

−3

Regularization parameter,  ε

Error in the velocity at the point (1.5,0,0)

Figure 4: Numerical computation of the velocity at two different points in the fluid for various
values of ε. The discretization was fixed with a 60 × 60 grid on each of the 6 patches. The top
graph shows the velocity error at a point on the surface of the sphere; the bottom graph shows the
velocity error at a point far from the surface.
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Figure 5: Finite helices of varying pitch. The length (viewed from the side), radius of the centerline,
and thickness were held fixed.
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Figure 6: The number of rotations required to swim one body length as a function of the number
of pitches per body length. The bar indicates the range of rotations measured by S. Goldstein for
L. illini [18].
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Figure 7: A high-voltage transmission (HVEM) image of a Leptonema illini, courtesy of the Re-
source for the Visualization of Biological Complexity that is supported by the National Center for
Research Resources, NIH RR01219. The width of the photo is 2.81 µm.
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Figure 8: Schematic of a spirochete motor used to drive the motion in the dynamic simulation. The
arrows indicate the motor springs that contract forcing the inner ring to rotate clockwise and the
outer ring to rotate counterclockwise. The motor springs periodically reattach to the next point of
the outer ring to maintain the motion.
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Figure 9: Elastic spirochete shown at equally-spaced time intervals during the dynamic simulation.
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Figure 10: Snapshot of a portion of the elastic spirochete and corresponding flow field on a plane
perpendicular to the axis of the helix.
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